Traversal of Binary Tree (Simplest Example)

To create a Binary search tree, follow my previous post: Basic Binary search tree (BST) implementation. We can implement the following programs in a simple binary tree or Binary search tree. 

In this post, we will write three simple methods to implement binary tree traversal. Let's start with some theory. 

Traversing a binary tree refers to visiting and processing each node in the tree in a specific order. There are three common methods for traversing binary trees:

  1. Inorder Traversal: In an inorder traversal, the nodes are visited in the order: left subtree, current node, right subtree. This traversal method is commonly used for binary search trees to visit the nodes in sorted order.
  2. Preorder Traversal: In a preorder traversal, the nodes are visited in the order: current node, left subtree, right subtree.
  3. Postorder Traversal: In a postorder traversal, the nodes are visited in the order left subtree, right subtree, and current node.

We will take the following tree for reference.

Tree for reference

Coding implementation

public class Node
{
    public int Data { get; set; }
    public Node? Left { get; set; }
    public Node? Right { get; set; }
    public Node(int val)
    {
        Data = val; 
    }
}

public class BinarySearchTree
{
    private readonly Node _root;
    public BinarySearchTree(int value)
    {
        _root = new Node(value);
    }

    public Node Root
    {
        get { return _root; }
    }

    public void PrintInOrder(Node node)
    {
        if (node == null)
            return;
        Console.Write($"|{node.Data}|  ");
        PrintInOrder(node.Left);
        PrintInOrder(node.Right);
    }

    public void PrintPreOrder(Node node)
    {
        if (node == null)
            return;
        PrintPreOrder(node.Left);
        Console.Write($"|{node.Data}|  ");
        PrintPreOrder(node.Right);
    }

    public void PrintPostOrder(Node node)
    {
        if (node == null)
            return;
        PrintPostOrder(node.Left);
        PrintPostOrder(node.Right);
        Console.Write($"|{node.Data}|  ");
    }


    public void Insert(int value)
    {
        Node currentNode = _root;
        Node parent = _root;

        while (currentNode != null)
        {
            parent = currentNode;
            if (value < currentNode.Data)
            {
                currentNode = currentNode.Left;
            }
            else
            {
                currentNode = currentNode.Right;
            }
        }

        if (value < parent.Data)
        {
            parent.Left = new Node(value);
        }
        else
        {
            parent.Right = new Node(value);
        }
    }
    
}

 

Printing Output :

BinarySearchTree binarySearchTree = new BinarySearchTree(12);
binarySearchTree.Insert(3);
binarySearchTree.Insert(442);
binarySearchTree.Insert(2);
binarySearchTree.Insert(78);
binarySearchTree.Insert(-90);
binarySearchTree.Insert(55);
binarySearchTree.Insert(90);

Console.WriteLine($"\nInOrder : ");
binarySearchTree.PrintInOrder(binarySearchTree.Root);

Console.WriteLine("\nPre-Order : ");
binarySearchTree.PrintPreOrder(binarySearchTree.Root);

Console.WriteLine("\nPost-Order : ");
binarySearchTree.PrintPostOrder(binarySearchTree.Root);

  Binary Tree Traversal

Note. Make sure to add null check in recusrive method, or else the program will break when the null node will come into picture.  

Inorder Traversal

public void PrintInOrder(Node node)
{
    if (node == null)
        return;

    Console.Write($"|{node.Data}|  ");
    PrintInOrder(node.Left);
    PrintInOrder(node.Right);
}

 Preorder Traversal

public void PrintPreOrder(Node node)
{
    if (node == null)
        return;

    PrintPreOrder(node.Left);
    Console.Write($"|{node.Data}|  ");
    PrintPreOrder(node.Right);
}

Postorder Traversal

public void PrintPostOrder(Node node)
{
    if (node == null)
        return;

    PrintPostOrder(node.Left);
    PrintPostOrder(node.Right);
    Console.Write($"|{node.Data}|  ");
}
Next Recommended Reading Triangle In C# - A Simplest Way To Do