ogrammmg Usm\

By Naveed Zam

LHASE
Than

Object Oriented Programming
Using C#

This free book is provided by courtesy of C# Corner and Mindcracker Network and its authors.

Feel free to share this book with your friends and co-workers.

Please do not reproduce, republish, edit or copy this book.
Naveed Zaman

Senior Software Engineer and Database Developer

Sam Hobbs
Editor, C# Corner

©2013 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

http://www.c-sharpcorner.com/

++ 4
it
-;:-_.'.

C#HCorner

This book is a basic introduction to “Object Oriented Programming Using C#" for beginners who have never used C#
before. After completing this book, you will understand:

Basic introduction to C# Classes
C# Class Properties
Use of Constructor

OOP’s Concepts like encapsulation, polymorphism etc.

Interface & Delegates

Table of Contents

Introduction to C# Classes
Introduction to C# Class Properties
More about C# Class Properties

a. Read only property.

b. Write only property.

¢. Auto implemented property.

Constructor

a. Default Constructor
Constructor Overloading
Private Constructors
Constructor Chaining
Static Constructors
Destructors

-0 000

Encapsulation

Inheritance

Polymorphism

Abstract Methods

User Activity Log Using OOP

. Difference between Encapsulation and Abstraction
. Interface

. Virtual Methods

. Delegates

©2013 C# CORNER.

SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

M
C#Corner

1. Introduction to C# Classes
C# is totally based on Object Oriented Programming (OOP). First of all, a class is a group of similar methods and B
variables. A class contains definitions of variables, methods etcetera in most cases. When you create an instance of this

class it is referred to as an object. On this object, you use the defined methods and variables.

Step 1

Create the new project with name "LearnClass" as shown below.

New Project
Rocent Temglates NET Framework 4 v Sotby: Defou
Installed Templates
pu— Type: VsuslCs
3 Vo Co uC#| Window; Forms Appkcation Vil C#
A propect foe creating an sppication with &
Windows . Forms user nterface
Wobd f* WPF Appication Visual C#
Claod
Roportng !'dl Console Applcstion Veusl C2
Shveright [—
Test :;9!1 Class Lbrary Visusl C#
WCE o=
Workfiow | WPF Browser Apphcation Vel Co
* Cther Langssies
Cther Project Types dl Emgy Project Vousl C#
-
< -
-ﬁﬂ Wirsdows Sarvice Visusl C#
.d WP Custom Cortrol Lbrary Vsl C#
€% WoF User Cortrol Libeary Vsl C#
o —
=C#| Windows Forms Contrel Lieary Visudl C#
Name: LearrClase]
Location: \documerts and sectigsipaveed ssmeniy docurmentsesosl R 2010PrORs v
Schution: Create new schion v
Sohtion nama: Learrilsss [VlCreste drectory For sohtion
[[)add to source contrel
T
Step 2

Using "Project” -> "Add Class" we add a new class to our project with the name "FLOWER".

©2013 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

Add New ltem - LearnClass

= Visual CF Reens 1
Type: Visud C# It
Code ﬂ Qoss Visusl C# Rews a0
Data 5 A enrgty class defirdion
v
Gonersl > g] IRerface Viousl C# Rows
Web
Windows Forms . l Windomes Form Viaual C# Rtors
W
Reporthg ‘g User Control Vissal C# Rowrs
Workfion
[T] oo o vk
®)| User Control (WPF) Visual C# Rtoms
= I Aok Box Voudl CF Rows
4
@: HOOMET Erty Data Model Visual CF ftems
v
4
Qo ROOMNET EnyQbject Ganerstor Vil CF e
v
]
Q, AOONET Sa¥-Tracking Ertky Gareeston Visusl C# oms
v
J Apphcation Confiparstion Fle Visual CF Rtews
'QI Fopicaion Mandest Fie Vsl C# Rewes
c# ._1 Sconerbdy nfoomation Fla Vo 2 ftame Y
Nare: | RLOWER ¢

Step 3

Now add the following code in the FLOWER class:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace LearnClass

{
class FLOWER

{

public string flowercolor;
public FLOWER(string color)
{

this.flowercolor = color;
}
public string display()
{

return "Color of the flower : " + this.flowercolor;

}

©2013 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

i

N
ol 1

C#Corner

In this example we have created the class FLOWER. In this class we declared one public variable flowercolor. Our FLOWER 6
class defines a constructor. It takes a parameter that allows us to initialize FLOWER objects with a color. In our casewe
initialize it with the color yellow. The Describe() method shows the message. It simply returns a string with the

information we provided.

Step 4
Insert the following code in the Main module.

using System;

namespace LearnClass
{
class Program
{
static void Main(string[] args)
{
FLOWER flow;
flow = new FLOWER("YELLOW");
Console.WriteLine(flow.display());
Console.ReadLine();

using System;

-~ namespace LearnClass

{
= class Program
{
= static void Main(string[] args) Create Obiect of Class car J
{
FLOWER flow; ———‘———iﬁd’____, Constructor of a class car with Red Color |
flow = new FLOWER("yELLOW");
Console,WriteLine(flow.display());
Console,.Readline();
}
}
}

©2013 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

o
i
RRaa

C#Corner

-'using System;
using System.Collections.Generic; 7
using System.Linq;
using System,Text;

- namespace LearnClass

{
= class FLOWER
{ Class Flower
public string flowercolor; — v
= public FLOWER(string color)\
{ Public Variable color
this.flowercolor -N* S
Method Name FLOWER (Constructor) for the
= public string display())
{ — Method Name Describe forthe class car J
return "Color of the flower : " + this.flowercolor;
}
> Property of class Car to access the
{) } private variable color

Note: Method name FLOWER and class FLOWER are the same name but the method is a constructor of the class. (We will
discuss that topic in detail later on.)

2. Introduction to C# Class Properties

Properties play a vital role in Object Oriented Programming. They allow us to access the private variables of a class from
outside the class. It is good to use a private variable in a class. Properties look like a combination of variables and
methods. Properties have sections: "a get and a set" method .The get method should return the variable, while the set
method should assign a value to it.

Step 1

Open a new project with the name "LearnProperties" as in the following:

©2013 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

I
New Project
Recert Templates 1 a1 [= . - 8
o+ Type: Veud C2
3 Vs Ce ’g-‘ Windows Forms Appcation Viudl C2 Lss
: A project for creating & comemnand-inn
Web S’? WEF Aogi atxn Vil €2
Coud
Reportng % Conacle Applcation Vs Co
Shverdgh —
Test ;dl Class Lbeary Vi C2
WCE g
Workfiow | WPF Browser Applcatson Vi Co
o Other Languages
& Qther Propect Types _C’J Emgty Project Vs C2
& Database x
—
W Tok Prescts 5GE| Wdows Seevice Ve Ce
@SF WPF Cugtom Control Lirary Viud Co
Cd‘); WFF User Cortrol LEeary Ve Ce
-di Windbows Feemms Control Lbeary Viud Co
Name: LodrrPrpectios
Location: Cidocuments and settingsinaveed. zamanlpmy documentsivigssl studo 201 0Promects v
Sobgion name: LearrPrparties [“)Create drectory for sohticn
[JAdd to source control
Step 2

Now to add the new classes to the project use "Project” -> "Add class" with the class name "BikeColor" as in the
following:

©2013 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

Add New Item - LearnPrperties
Installed Templates

= Visusl CF Rews
Code
Daa
Geowedl
web
Windows Foems.

Reporteg
Workflow

Step 3

After adding the new class your codes looks like the following:

Scrt byt | Def ok v
o) am
2
A Teedoce
Wiesdows Foem
Usee Cortred
Component Class
User Cortred (WFF)
Abong B
ADONET Ertry Dats Model
ADO.NET ErtRyCbjnct Genmrator
ADO.NET Se¥f -Traching Erdy Gerwe stoe
Appication Configr ation Fle

Appication Mardest Fie

S o o o 7] 2 B)

Aganobe fofortoatioo Fie

~lusing System;

\using System.Collections.Generic;

\using System.Linq;

using System.Text;

~Inamespace LearnPrperties

| {

=] class BikeCelor

Visudl CF oo

Vious C# Reers

Vigusd C# Jreers

Vel C# Rerrs

Visud C# Treers

Vsl C# Jteers

Vol C# Tteers

Vious C8 Reers

Veus C# Resrs

Vil CF Teers

Veeusl C# fteers

Vsl C# Reers

Vitn oM 8 Thaene

~

Type: Veusl CF Rems
An ompty cass defintion

©2013 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

T
by
C#Corner

10

Insert the following code in the class BikeColor as in the following: 7

Step 4

Flusing System;
using System.Collections.Generic;

using System.Ling; I i | ii “I “ Il ii |
| using System.Text;

= namespace LearnPrperties

(— —
8 class | Class Name BikeColor |
i {
J private string [MyBikeColor:] —
= public [BikeColory(string UserDemandColor))
{ ~+|_Constructor of Class BikeColor |
[this MyBikeColor] = [UserDemandColor ; D
\ } :
L'. [public string MyBikeColor |
i { =
= get \
{ ===
"eturnlﬁoikeColor-;]
| }
& set
{
|MyBikeColor = value;
}
‘ }
L. 3
L}
Step 5

Insert the following code in the Main Module. After adding the following code it will show the error.

Console.Writeline("User Demand Bike Color is :- + bikecolor.MyBikeColor);

This is because you are accessing the private variable from outside the class; that is not allowed in OOP.

©2013 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

[Flusing System;
using System.Collections.Generic;
using System.Linq;

| using System.Text;

=namespace LearnPrperties

{
& class Program
‘ {
& static void Main(string[] args)
{
BikeColor bikecolor = new BikeColor("Blue”);
Console.WriteLine("User Demand Bike Color is :
Console.ReadLine();
j
, }
L}

Press F5. It will show the following error.

" + bikeccler.

. B
ﬁjﬁt
T

C#Corner

BikeColor);

Step 6

Error List
QD 1 Error I 1\ 0 Warnings lu) 0 Messages
Description
@ 1 'LearnPrperties.BikeColor.MyBikeColor' is inaccessible due to its protection level

Now we will try to access the private variable using the property _MyBikeColor. Then it will work fine.

[Fusing System;

| using System.Collections.Generic;
| using System.Linq;

| using System.Text;

[“namespace LearnPrperties

&
= class Program
{
= static void Main(string[] args)
{
BikeColor bikecolor = new BikeColor("Blue");
Conscle.WriteLine("User Demand Bike Ceclor is :
Console.ReadLine();
¥
‘ }
L}

" + bikecolor. MyBikeColor);

©2013 C# CORNER.

SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

11

4

C#Corner

12

<< file://IC:Mocuments and Settings/naveed.zaman/my documents/visual st

lser» Demand Bike Color» is :-

Conclusion

After creating this simple example we have learned the importance of properties in OOP. Properties help us to access the
private variable of the class. Moreover, properties help us to protect the private variable of the class from the
unauthorized access.

©2013 C# CORNER.
PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

3. More about C# Class Properties

Types of Properties

The following are the types of properties:

Read only property.
Write only property.
Auto implemented property.

Read only Properties

C#Corner

13

Using a simple technique we can apply the read only property by just defining the get accessor in the property
implementation.

Example

using System;

namespace Readonlyproperties

{

class Program

{

static void Main(string[] args)

{

}

Car SportCar = new Car();

Console.WriteLinge(
"Model: {0}",SportCar.Model_ID);

Console.WriteLine(
"Maker: {0}",SportCar.Maker_Name);

Console.ReadKey();

public class Car

{

private int model = 2012;
private string maker = "mercedes”;

public int Model_ID

{
get

{

return model;

}
}

public string Maker_Name

SHARE THIS DOCUMENT ASIT IS

©2013 C# CORNER.
. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

C#Corner

get 14
{

return maker;

}
}
}

}

In the example above we create the Car class with two read-only properties, Model_ID and Maker_Name. You can say
that each property is read-only because they only have get accessors. We assign the values for the model and maker at
the time of defining the variables. In this case, the values are 2012 and "mercedes".

The Main method of the Readonlyproperties class instantiates a new Car object named SportCar. The instantiation of
SportCar uses the default constructor of the Car class.

Since the model and maker properties of the Car class are read-only, if you insert SportCar.Model_ID = 2013 into the
example, the program will generate an error and not compile, because Model_ID is read-only; the same goes for
Maker_Name. When the Model_ID and Maker_Name properties are used in Console.WriteLine, they work fine. This is
because these are read operations that only invoke the get accessor of the Model_ID and Maker_Name properties.

Write only Property

We have discussed read only properties. Now we will discuss the write-only property; there is very little difference
between the read-only and write-only properties. A write-only property only has a set accessor.

Example
using System;

namespace WriteOnlyProperty
{

class Program

{
static void Main(string[] args)

{
Car SportsCar = new Car();
SportsCar._model = 2013;
SportsCar._maker = "lamborghini";
SportsCar.DisplayCustomerData();
Console.ReadKey();

}

public class Car

{

private int model = -1;

©2013 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

}

public int _model

{

set

{

model = value;

}

private string maker = string.Empty;

public string _maker

{

set

{

maker = value;

}
}

public void DisplayCustomerData()
{

Console.WriteLing(
"Model: {0}", model);

Console.WriteLine(
"Maker: {0}", maker);

C#Corner

15

In the example above we create the Car class with two write-only properties, Model_ID and Maker_Name. You can say
that each property is write-only because they only have set accessors. Using the set property we have assigned values to

model and maker. In this case, the values are 2013 and "lamborghini".

The Main method of the WriteOnlyProperty class instantiates a new Car object named SportCar. The instantiation of

SportCar uses the default constructor of the Car class.

Since the model and maker properties of the Car class are write-only, if you inserted Console.WriteLine (SportCar.
Model_ID) into the example, the program will generate an error and not compile, because Model_ID is write-only; the
same goes for Maker_Name. When the Model_ID and Maker_Name properties are used in SportCar.Model_ID =2012,
they work fine. This is because these are write operations that only invoke the set accessor of the Model_ID and
Maker_Name properties.

Auto implemented Property

©2013 C# CORNER.

SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

hi L
i

TR

C#Corner

C# 3.0 introduced a new class property, called auto implemented property, that creates properties without get and set
accessor implementations. 16

Example
using System;

namespace AutoImplementedproperty

{

class Program

{
static void Main(string[] args)

{

car SportCar = new car();

SportCar.model = 2014;
SportCar.maker = "ferrari";

Console.WriteLine(
"Model: {0}", SportCar.model);

Console.WriteLine(
"Maker: {0}", SportCar.maker);

Console.ReadKey();

}

public class car

{
public int model { get; set; }
public string maker { get; set; }
}

}

Please note that the get and set accessor in this example do not have implementations. In an an auto-implemented
property, the C# compiler performs the traditional properties behind the scenes. Main methods use the same traditional
properties in auto-implemented property that we discussed earlier.

©2013 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

H
¥ haa

C#HCorner

4. Constructor
17
Types of Properties

e Default Constructor

e Constructor Overloading
e Private Constructors

e Constructor Chaining

e Static Constructors

e Destructors

Please note a few basic concepts of constructors and ensure that your understanding is crystal clear, otherwise you can't
understand OOP (constructors).

Constructors have the same name as the class name.

The purpose of constructors is for initialization of member variables.

A constructor is automatically invoked when the object is created.

A constructor doesn't have any return type, not even void.

If we want some code to be executed automatically then the code that we want to execute must be put in the
constructor.

We can't call the constructor explicitly.

vk wih e

o

The general form of a C# constructor is as follows:

modifier constructor_name (parameters)

{
//constructor body

}

The modifiers can be private, public, protected or internal. The name of a constructor must be the name of the class for
which it is defined. A constructor can take zero or more arguments. A constructor with zero arguments (that is no-
argument) is known as the default constructor. Remember that there is not a return type for a constructor.

Default Constructors

A constructor without arguments is known as the default constructor. Remember that there is no return type for a
constructor. That default constructor simply invokes the parameterless constructor of the direct base class.

Example 1

using System;
namespace DefaultConstructors

{

class Program

{
static void Main(string[] args)

{

car sportscar = new car();

©2013 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

}

Console.WriteLine("Car Model is :{0} ", sportscar.model_Id);
Console.WriteLine("Car Name is :{0}", sportscar.Maker_Name);
Console.ReadKey();

class car

{

Car
Car

private int model=-1;
private string maker = string.Empty;

public car()
{
//Default Constructor
}
public int model_Id
{
get {
return model ;
}
}
public string Maker_Name
{
get
{

return maker;

Output Example 1

cv file:/ic:/documents and

Model is :=—1
Name 1is =

Please note one more point; if we remove the following code from Example 1 then the output is the same.
public car()

//Default Constructor

i++
$it

L] l"\.....
ba LE &S

C#HCorner

18

In this simple example we have the constructor without arguments or zero parameters that is the default constructor of
the class. The output of the preceding example is empty member variables.

Which means that if we did not define the constructor of the class the system will call the default constructor.
©2013 C# CORNER.

SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

Constructors Overloading

. hi i

C#Corner

First we will discuss the purpose of constructor overloading; it's very important to have the clear understating of the
preceding topic. There are many complex conditions that exist when designing OOP models and we need to initialize a
different set of member variables for different purposes of a class. So we need to use constructor overloading. The
definition of constructor overloading is:

Just like member functions, constructors can also be overloaded in a class. The overloaded constructor must differ in their
number of arguments and/or type of arguments and/or order of arguments.

Example 2

using System;

namespace ConstructorsOverloading

{

class Program

{

static void Main(string(] args)

{

}

car sportscarl = new car();
car sportscar2 = new car(2013, "mercedes");
car sportscar3 = new car("mercedes", 7.8);

Console.WriteLine("Constructor without arguments");
Console.WriteLine("Car Model is :{0} ", sportscarl.model_Id);
Console.WriteLine("Car Name is :{0}", sportscarl.Maker_Name);
Console.WriteLine("Car Engine Power is :{0}", sportscarl.Engine);

Console.WriteLine("\nConstructor with two arguments");
Console.WriteLine("Car Model is :{0} ", sportscar2.model_Id);
Console.WriteLine("Car Name is :{0}", sportscar2.Maker_Name);
Console.WriteLine("Car Engine Power is :{0}", sportscar2.Engine);

Console.WriteLine("\nConstructor with two arguments");
Console.WriteLine("Car Model is :{0} ", sportscar3.model_Id);
Console.WriteLine("Car Name is :{0} ", sportscar3.Maker_Name);
Console.WriteLine("Car Engine Power is :{0}", sportscar3.Engine);

Console.ReadKey();

class car

{

private int model = -1;
private string maker = string.Empty;
private double Enginetype= 0.0;

©2013 C# CORNER.

SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

19

C#Corner

public car() 20
{
//Default Constructor
}
public car(int _model,string _maker)
{
model = _model;
maker = _maker;
}
public car(string _maker, double _power)
{
maker = _maker;
Enginetype = _power;
}
public int model_Id
{
get
{
return model;
!
set
{
model = value;
!
}
public string Maker_Name
{
get
{
return maker;
}
set
{
maker = value;
}
}
public double Engine
{
get
{
return Enginetype;
}
set
{
Enginetype = value;
}
}

©2013 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

4

EH
H

C#Corner
) 21

Output Example 2

Constructor without arguments
Car Model is :=-1

Car Name is :

Car Engine Power is :0

Constructor with two arguments
Car Model is :2013

Car Name is :mercedes

Car Engine Power is :0

Constructor with two arguments
Car Model is :—1

Car Name is :mercedes

Car Engine Power is :7.8

Dear reader, please note that in this example we have overload the constructor using three different objects, these are
sportscarl, sportscar2 and sportscar3.

We notice that:
e sportscarl has no arguments (the default constructor is out of topic scope). So that member variable has that
default values that was assigned at the time of initialization.

e sportscar2 has two arguments that initializes the member variables model and name with the values 2013 and
Mercedes respectively but does not initialize the Enginetype variable so it has the default value zero.

e sportscar3 has two arguments that initialize the member variables name and Enginetype with the values
Mercedes and 7.8 respectively but does not initialize the model variable so it is has the default value -1.

Private Constructors

Dear reader, as we know, the private access modifier is a bit of a special case. We neither create the object of the class,
nor can we inherit the class with only private constructors. But yes, we can have the set of public constructors along with
the private constructors in the class and the public constructors can access the private constructors from within the class
through constructor chaining. Private constructors are commonly used in classes that contain only static members.

using System;
namespace PrivateConstructors
{
©2013 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

C#Corner

class Program
{ 22
static void Main(string[] args)
{
car sportscar = new car(2013);
Console.Read();
!
class car
{
public string carname;
private car()
{
carname = "lamborghini";
}
public car(int model):this()
{
Console.WriteLine("Model Year:{0}",model);
Console.WriteLine("Maker Name:{0}",carname);

}

This is a very simple example of private constructors in which we use a public constructor to call the private constructor.
Constructors Chaining

Dear reader, when a constructor invokes another constructor in the same class or in the base class of this class it is known
as constructor chaining. It is a very useful technique for avoiding code duplication.

using System;
namespace Constructorchaining

{

class Program
{
static void Main(string[] args)
{
car sportscar = new car(7.8);
Console.Read();
}
class car
{
public string carname;
public int model;
public double engine;
public car(string _carname)
{
carname = _carname;
©2013 C# CORNER.

SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

hi L
i

TR

C#Corner

}

public car(int _model): this("lamborghini”)

{

model= _model;

}

public car(double _engine) : this(2013)

{
engine = _engine;
Console.WriteLine("Model Year:{0}", model);
Console.WriteLine("Maker Name:{0}", carname);
Console.WriteLine("Engine Type:{0}", engine);

}

In the preceding example we created three different classes with the name car having different parameter types, each
one chain the previous one to invoke the other constructor.

Static Constructors

The static constructor is the special type that does not take access modifiers or have parameters. It is called automatically
to initialize the class before the first instance is created or any static members are referenced. The static constructor is not
called directly. Users can't control the execution of the static constructor.

using System;
namespace staticconstructors
{
class Program
{
public class car
{
static car()
{
System.Console.WriteLine(@"Lamborghini is the best sports car owned by Audi AG 1998 (its static info)");
}
public static void Drive()
{
System.Console.WriteLine("Audi is the stable company");
}
}
static void Main()
{
car.Drive();
car.Drive();
Console.ReadKey();

©2013 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

23

4

[
LHASE
Than

C#Corner

} 24

Lamborghini is the bhest sports car owned by Audi AG 1998 (its static info)
Audi is the stable company

s the stable company

Note that the static constructor is called when the class is loaded the first time. When we again call "car.Drive" it will not
call the static constructor.

Destructors

Dear reader, when we are working with OOP and creating objects in system memory it's necessary to clean the unwanted
objects from the system memory The .NET framework has built-in Garbage Collection to de-allocate memory occupied
by the unused objects. A Destructor is a function with the same name as the name of the class but starting with the
character ~. The Destructor can't have any of the modifiers private, public etcetera.

Example

class car

{
public car()

{

// constructor

}

~car()

{
// Destructor

}
}

5. Encapsulation

"Encapsulation” is a process of binding data members (variables and properties) and member functions (methods) into a
single unit". And Class is the best example of encapsulation.

Here is a very simple diagram that will explain encapsulation itself:

©2013 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

.-'i_.it

.....
¥ haa

C#Corner

Class J 25
%‘\\.
Methods
Ee————
» Variables

Key Points of Encapsulation

e Protection of data from accidental corruption

e Specification of the accessibility of each of the members of a class to the code outside the class

e Flexibility and extensibility of the code and reduction in complexity

e Encapsulation of a class can hide the internal details of how an object does something

e Using encapsulation, a class can change the internal implementation without affecting the overall functionality of
the system

e Encapsulation protects abstraction

In very simple words we can say that encapsulation is a technique to hide the complexity of a class (its member variables
and methods) from the user. It makes it easier for the user to use only the accessible required methods plus it will protect
the data from accidental corruption.

Example

using System;
namespace Encapsulation
{
class Program
{
static void Main(string[] args)
{
credit_Card_Info cr = new credit_Card_Info("Naveed Zaman", "002020-1",5000,16.5);
cr.disbursement=6999;
cr.display();
Console.ReadKey();
}
class credit_Card_Info
{
private string customername=string.Empty ;
private string cardno = string.Empty;
private double creditamount=-1;
private double markuprate = -1;

public credit_Card_Info(string _customername, string _cardno, double _creditamount, double _markuprate)
{
©2013 C#t CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

+.+t
i'*'=-.

C#HCorner

customername = _customername;
cardno = _cardno;

creditamount = _creditamount;
markuprate = _markuprate;

}

public double disbursement
{

get

{

return creditamount;

}

set

{
creditamount = creditamount + value;
creditamount = creditamount * markuprate / 100 + creditamount;

}

public void display()

{
Console.WriteLine("Customer Name :{0}", customername);
Console.WriteLine("Card Number :{0}", cardno);
Console.WriteLine("Markup Rate :{0}", markuprate);
Console.WriteLine("Current Balance with Markup:{0}", creditamount);

}

In that example we have created the class credit_Card_Info with four member variables having private access modifiers.
Then we have defined the constructor of the class that initializes the four member variables of a class. After that we used
get and set properties of the class to access the private variable of a class. The last display method will show the output
of the class member variables.

So we can observe that the user must provide only the "cr.disbursement=6999" amount and encapsulation will calculate
the markup and outstanding of the client. In that simple example the user did know the complexity of the class member
variables and methods.

Another very common example of encapsulation is TextBox.
For Example:

TextBox th = new TextBox();
tb.Text ="Hello World";

©2013 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

26

hi L
i

TR

C#Corner

27

6. Inheritance

Inheritance means to inherit something from the source. For example a son can inherit habits from his father. The same
concept is used in of Object Oriented Programming; it's the second pillar of OOP.

Inheritance enables creation of a new class that inherits the properties from another class or base class and the class that
inherits those members is called the derived class. So the derived class has the properties of the base class and its own
class properties as well.

Here is a very simple diagram that will explain inheritance:

Vehicle |

Electric) (Petrol

Example:

using System;
namespace Inheritance

{

class Program

{

public class vehicle

{
public vehicle()

{

Console.WriteLine("I am Vehicle");

}
}

public class car : vehicle

{
public car()

{
Console.WriteLine("I am Car");
©2013 C#t CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

-"'"i‘ i
Ui

C#Corner

}
} 28
public class truck : vehicle
{
public truck()
{
Console WriteLine("I am truck");
}
}
public class electric : car
{
public electric()
{
Console.WriteLine("I am electric car");
}
}
public class petrol : car
{
public petrol()
{
Console.WriteLine("I am patrol car");
}
!

static void Main(string(] args)

{
truck tr = new truck();
Console WriteLing("****#*xsxdiiisix).
petrol pr = new petrol();
Console WriteLing("****#*x ki),
electric el = new electric();
Console WriteLing("****#x ki),
Console.ReadKey();

Out Put:

©2013 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

.'.*1..

4~

C#Corner

29

I am electric car

JmE-3nE e - 3nf—ef o -3nf-ef -Juf-3nf-3ef -Juf-Jufof -Juf-

In this simple example we have designed a base class, vehicle, and then we derived two classes, car and truck; these are
derived classes of the vehicle class. After that we again create two classes derived from the car class. The Patrol and
electric classes are derived classes of the car class which is the base class for the derived classes. Then we just create the
object of the truck class that automatically calls the base class vehicle and the same for the patrol and electric classes, we
create an object of these classes that automatically call the car class and then the car class calls the vehicle class.

©2013 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

7. Polymorphism

llllll

C#Cc::rner

How often do we use polymorphism in our programs? Polymorphism is the third main pillar of Object Oriented
Programming languages and we use it nearly daily without thinking about it.

Here is a very simple diagram that will explain the polymorphism itself.

Polymorphism

/‘

o

Draw

Shape

=

/N

Draw

Draw

In simple words we can say that whenever we are overloading the methods of a class it is called polymorphism. Or you

can say polymorphism is often expressed as "one interface, multiple functions". This means we have more than one
function with the same name but different parameters.

Example

using System;
namespace Polymorphism

{

class Program

{

class car

{

public void CarDetail()

{

}

Console.WriteLine("Car Toyota is available");

public void CarDetail(int priceRange)

{

©2013 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

30

.
.*.
fitor
P
i

C#HCorner

Console.WriteLine("Car lamborghini is available its expensive car");

} 31

public void CarDetail(int priceRange, string colour)
{
Console.WriteLine("Car mercedes is available in white color");
}
}
static void Main(string[] args)
{
car cr = new car();
cr.CarDetail();
cr.CarDetail(2200000);
cr.CarDetail (2200000, "White");
Console.ReadKey();

Car Toyota is available
Car lamborghini is available its expensive car

Car mercedes is available in white color

In this example we have created three different functions with the same name (CarDetail) having a different set of
parameters. In the next topic I will discuss Polymorphism in more detail with its two types:

1. Static Polymorphism
2. Dynamic Polymorphism
8. Abstract Methods

"Abstraction is used to manage complexity. No objects of an abstract class are can be created. An abstract class is used for
inheritance."

For Example

When we drive a car we often need to change the gears of the vehicle but we are otherwise not concerned about the
inner details of the vehicle engine. What matters to us is that we must shift gears, that's it. This is abstraction; show only
the details that matter to the user.

Example

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

©2013 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

hi L
i

TR

C#Corner

namespace @abstract
{ 32
class Program

{

abstract class pay // Abstract class

{
protected int _basicpay = 20000;
protected int _houserent = 15000;
protected int _Tax = -500;
protected int _NetPay = -500;

public abstract int gradtwo { get; }
public abstract int gradone { get; }

class Netpay : pay

{
public void CalculatePay()
{

_NetPay =_basicpay + _houserent + _Tax;

}

public override int gradtwo // overriding property

{
get

{

return _NetPay;
}
}

public override int gradone // overriding property

{
get
{

return _NetPay = _NetPay + _NetPay * 10 / 100;

}

}

}
static void Main(string[] args)

{
Netpay o = new Netpay();
o.CalculatePay();
Console.WriteLine("Officer Grad Il pay = {0} \nOfficer Grad I pay = {1}", o.gradtwo, o.gradone);
Console.ReadKey();
}
}

©2013 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

}

Output

Of ficer Grad II pay = 34500
Of ficer Grad I pay = 37950

Dear reader, I need your extra concentration for this.

Step 1

abstract class pay // Abstract class

{

}

protected int _basicpay = 20000;
protected int _houserent = 15000;
protected int _Tax = -500;
protected int _NetPay = -500;
public abstract int gradtwo { get; }
public abstract int gradone { get; }

-I.++

Ry

C#HCorner

33

I have defined one abstract class "pay" with protected variable that can only be accessed by the same class or in a

derived class. These member variables are initiated with values.

Step 2

class Netpay : pay
{
public void CalculatePay()
{
_NetPay = _basicpay + _houserent + _Tax;

}

public override int gradtwo // overriding property
{
get
{
return _NetPay;
}
}

public override int gradone // overriding property
{
get
{
return _NetPay = _NetPay + _NetPay * 10 / 100;
}
}

©2013 C# CORNER.

SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

C#Corner

In this step we have defined the class "Netpay" derived from the abstract base class "pay".

34
In that class we have defined the "CalculatePay" method having public access modifiers to calculate the pay of the
employee. During the pay calculation we used a protected variable from the base class. Here we have overriden the two
properties "gradone" and "gradtwo" that will return the values of "_NetPay".

Step 3

static void Main(string[] args)
{
Netpay o = new Netpay();
o.CalculatePay();
Console.WriteLine("Officer Grad II pay = {0} \nOfficer Grad I pay = {1}", o.gradtwo, o.gradone);
Console.ReadKey();
}

In the void main session we have created the object of the "Netpay" class. Using the object we call the
"CalculatePay" method that will do the calculation of the pay.

So the user is only concerned with the pay of the employee and its output. How this pay is calculated is not necessary to
be understood.

9. User Activity Log Using OOP

Key Concept behind the application

Now, we will create a small application. Please follow this link user-activity-log-using-C-Sharp-with-sqgl-server/ before

continuing. Here we will again redesign the same application using the following concepts. It will help us to understand
these concepts more clearly plus how to implement them in our own applications.

Default Constructor
Constructor Overloading

1. Class

2. Member variables

3. Read only Properties
4. Methods

5. Object

6.

7.

Application Detail

Keep track of user activities in a Database Managements System. Specially while working on the Client server
environment where we need to keep track of the System IP/System Name, Login Id, Time stamp and the action
performed on any of database applications. Either the user edits any client record or does a transition etcetera.

Step 1

Create the table with the name User_Activity_Log.

©2013 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

http://www.c-sharpcorner.com/UploadFile/e881fb/user-activity-log-using-C-Sharp-with-sql-server/

C#Corner

CREATE TABLE [dbo].[User_Activity_Log](
[UAL_User_Id] [varchar](20) NOT NULL, 35
[UAL_Timestamp] [datetime] NOT NULL,
[UAL_Function_Performed] [nvarchar](100) NOT NULL,
[UAL_Other_Information] [nvarchar](100) NULL,
[UAL_IP_Address] [nvarchar](15) NOT NULL,
PRIMARY KEY CLUSTERED
(
[UAL_User_Id] ASC,
[UAL_Timestamp] ASC
JWITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS =ON, AL
LOW_PAGE_LOCKS = ON) ON [PRIMARY]
) ON [PRIMARY]

GO
SET ANSI_PADDING OFF

Step 2

Create a Login table.

CREATE TABLE [dbo].Login_Client(
[LON_User_Name] [varchar](20) NULL,
[LON_Login_Name] [varchar](20) NULL,
[LON_Employee_No] [varchar](10) NULL,
[LON_Login_Password] [varchar](20) NULL,
[LON_Type] [nvarchar](20) NULL,
[LON_Status] [varchar](20) NULL

) ON [PRIMARY]

GO
SET ANSI_PADDING OFF

Step 3

Now insert one record in the login table.

INSERT INTO PSH.[dbo].[Login_Client]VALUES('Naveed Zaman','naveed.zaman','22339','khan@123''A",'Active")
Step 4

Start Visual Studio and create a new Desktop project with the name "UserActivityLog_OOP_Concept".

©2013 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

mailto:'Naveed%20Zaman','naveed.zaman','22339','khan@123','A','Active'

New Project

Recent Tempiates
T f
Windows Forms Applcation Vil C# e Vi C
A project for creating an application with 3
: Windows Forms user interface
| WPF Applcation Visudl C2
Console Appbcation Visud O
| Class Lbeary Yisual C#
| WPF Browser Applcation Visual C#
Empty Project Visud C#
Windows Service Visudl C#
WPF Custom Control Libeary Visudl C#
c#
'_—J WPF User Conkrol Library Visud C#
E Windows Forms Control Library Visud C#
Name: Usertiviylog_OOP_Concept d
Location: ciidocuments and settngsinavesdimy documentsivisua studo 2010iProjects v, &m
Sckbonname: Userictiviylog OOP_Concet [Dlcreate drectory for sohtion
[TJadd to souree cortrol
=

Step 5

First of all we create the login form that will help us to understand the basic concepts of the topic. Create the form as
shown in the picture.

©2013 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

%
C#Corner
= Login Window 37
Step 6
Create another form with the name of frmActivity.
©2013 C# CORNER.

SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

Add New Item - UserActivitylog

Installed Templates Seet by: wu Wl ‘ Y -
= Visual C# Items
Type: Visud C2 Iy

Code Inberked Forn Vissdl C# Ress e -

Data A black Windows Form

Generdl Inherited User Control Visudl C# Rtems

Web

Windows Forms Windows Form Visud C# Ttems

User Corkrol Visud (2 Rtens

Abot Bax Visudl 2 Ttems

Online Templstes

Custom Control Vicual C# Ttems

G s (0] e [0 s’ (00

MDI Parent Form Visudl C2 Jtems

Narme: FrActivty.cs

Step 7

Now add a few buttons on it. For example "Add-New", "Save", "Discard" and "Logout" buttons on a form as showm in the
following picture.

©2013 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

%
C#Corner
& FrmActivity 39
Step 8
Add a new class with the name "Main".
©2013 C# CORNER.

SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

.4. ’i‘ i

C#Corner

| Add New Item - UserActivitylog 0OP_Concept

Installed Templates Satbyiofa w| | @ f , »
1 = viual C# ems 'ﬁ . R % Type: voud C2 Rens
= An empty dass defindion
:ﬁ Interface Visual C# ltems
j Windows Form Visual C# Rems
:g User Control Visual C# Rems
Onlne Templates @ Companent Class Visual C# Toems
€] UserContrl (WPF) Vil C# Rens
3 About Box Visual C# Rems
g’; ADOMNET Entty Data Model Visual C# Rems
‘95 AOO.AET EntityObiect Generator Yisual C# Rems
@ K00 NET Sef-Tracking Entty Generakor isual C# Bems
_] Ropicaticn Configuration Fie Visual C# Rems
é] Apphestion Manfest Fie Visual C# Rems
C‘j Bccembby Infremation Fis Viasd (2 Treme

Step 9

Now we will create the function GetDBConnection. It is a public function so it can be accessed from anywhere in the
project. But you must modify the data source settings relevant to your own settings.
For example:

1. SQL Server instance name. (\\CRMIS)
2. SQL Server user name and password. (user id sa password.###Reno123)
3. Initial Catalog=PSH (database name)

Add the public static class to "Main.cs™:

public static SglConnection GetDBConnection()
{

SqglConnection conn = new SqlConnection(
"Data Source=.\\CRMIS;Initial Catalog=PSH;User ID=sa;Password=###Reno321");
return conn;

}

Step 10

©2013 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

40

.i_’i‘t

C#Corner
Now we will create another class login that will help us to verify the anthorication of the user. After providing username
and password. 41

Add New Item - UserActivityLog 00P_Concept

T Satby: Defak vt E | .
= visud C# Rems A
£
Code Cg Class Vo CoRems | |TPC Veudl G Rems
Data ~ An empty dass defintion
4
Generdl % 4 interface Yisual C# Rems
Web 'ﬂ
Windoms Foms "= windows Form Visual C# Rems
— =
Reporting é User Contrl Visual C# Rems
Workflow
T D sz
_f User Control (WPF) Visual C¥ Rems
%_| AboutBox ¥isual C# Rems
@ HO0NETEntty DtaMode Visual C# Rems
-~
é, ROO.NET EntityObiect Generakor Visual C# Rems
v
é, ADOMET Sef-Tracking Entity Generator Visual C# Remns
v
_] Fppication Configuration Fie Visul C¥ oeens
E,J Aopdcatinn Manfest Fi Yisual C# Rems
7 1 [— o pems ¥
Name: »_ngpcs
| a1 |
Step 11

Insert the following code in the class login:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Data.SqlClient;
using System.Data;

namespace UserActivityLog_OOP_Concept
{

class Login

{
©2013 C# CORNER.

SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

+.+i

C#HCorner

static string userid;
static string password; 42
static string ip; S
public string EmpNo = string.Empty;

SqglConnection con = Main.GetDBConnection();

public Login()
{

public Login(string _userid, string _password, string _ip)
{

userid = _userid;

password = _password;

ip=_ip;

public string getidinfo

{
get

{
return userid;
}
}

public string getpassinfo
{
get
{
return password;
}
}
public string getipinfo
{
get
{
return ip;
}
}
public string Validation()
{
try
{
DataTable consultanttable = new DataTable();
string SQL = @"SELECT LON_Employee_No FROM Login_Client where
LON_Login_Name ="" + userid + "' AND LON_Login_Password =" + password + "'";
SglDataAdapter Consultantdataadapter = new SqglDataAdapter(SQL, con);
Consultantdataadapter.Fill(consultanttable);
foreach (DataRow myrow in consultanttable.Rows)

©2013 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

i

IIIII K
¥ haa

C#Corner

{
EmpNo = (myrow[0].ToString());

}
}

catch (InvalidCastException e)

{

throw (e); // Rethrowing exception e

}

return EmpNo;

}

}
}

Please check the code carefully.

class Login
{
static string userid;
static string password;
static string ip;
public string EmpNo = string.Empty;
SqlConnection con = Main.GetDBConnection();

public Login() // default constructor

{}

public Login(string _userid, string _password, string _ip) // constructor overloading

{

userid = _userid;
password = _password;
ip = _ip;

We have create the class login and in that class we define four member variables, three of them static and one is public.
We have already discussed access modifiers in prevoius topics. After that we have created an object icon of the class
Main that we defined in Step 6. It will help us to create the connnection between C# and SQL Server.

After that we have defined the default constructor of a class Login and overloaded the Constructor with two parameters.
Its very important to understand the importance of the overloaded constructor. It will be initlized whenever we create the
object of the class with the two parameters, userid and password. We have defined a default constructor as well that will
help us when we need an object on a class without parameters.

©2013 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

43

i,

C#Corner

public string getidinfo

{

get

{ return userid; }
}
public string getpassinfo
{

get

{ return password;}
}
public string getipinfo
{

get

{ return ip; }
¥

Further we have defined read-only properties of the class login that will help us to read member variables.

public string Validation()

{
try
{
DataTable consultanttable = new DataTable();
string SQL = @"SELECT LON_Employee No FROM Login_Client where
LON_Login_Name ='" + userid + "' AND LON_Login Password ='" + password + "'";
SqlDataAdapter Consultantdataadapter = new SqlDataAdapter(SQL, con);
Consultantdataadapter.Fill(consultanttable);
foreach (DataRow myrow in consultanttable.Rows)
{
EmpNo = (myrow[@].ToString());
}
}
catch (InvalidCastException e)
{
throw (e); // Rethrowing exception e
}
return Emplo;
}

In this session we have defined a method validation of a class login that will help us to validate the login info and return
EmpNo.

©2013 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

44

i,
e

Ui

C#Corner

Step 12
45

Please insert the following code in the UserActivityLog class. _

using System;

using System.Collections.Generic;
using System.Text;

using System.Data.SqlClient;
using System.Data;

namespace UserActivitylog OOP Concept

{

class UserActivitylog %

{
protected string UserID;

protected string IP;

public UserActivitylog(string UserID, string IP) >*
{

UserID = UserID;

IP= _1Ip;
} J
public void task(string action)
{

~

string SQL = @" insert into User Activity Log

values('" + UserID + "',getdate(),"" + action + "',"","" + this.IP + "*)";
SglConnection con = Main.GetDBConnection();
< DataTable consultanttable = new DataTable();

SqlDataAdapter Consultantdataadapter = new SqlDataAdapter(SQL, con);
Consultantdataadapter.Fill(consultanttable);

Block A

e We have defined two member variables.

e We have defined the constructor of the class User_Activity_Log with two parameter that will initlize the member
variables of the class.

Block B

©2013 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

C#Corner

e A method task will be used to insert the data into the database, so we need to create the object on the main
class with the nameof icon. 46
e Using an insert statement we can insert the new row into the database that will get the parameter action which

can be "login", "add new", "save" etcetera.

Step 13

©2013 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

Please insert the following code in form1.

namespace UserActivitylog 00P Concept

{

public partial class Forml : Form

{

public Formi()
{
InitializeComponent();
}
protected string CIP = "5";
private void Forml _Load(object sender, Eventirgs e)
{

this.Location = new Point(258, 200);

string host = Dns.GetHostName();
IPHostEntry ip = Dns.GetHostEntry(host); >
CIP = (ip.AddressList[@].ToString());

1b1cP.Text = (ip.AddressList[@].ToString());
J

}

private void btnCancel Click(object sender, EventArgs e)

}

private void BtnLogin Click(object sender, EventArgs e)
{

if ((txtusername.Text == ""))

{
}
else if (txtpassword.Text == "")

{
}

MessageBox, Show(“Please Enter User Name");

MessageBox, Show("Please Enter User Name");

C#HCorner
47
©2013 C# CORNER.

SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

Tk

C#HCorner
else 48

Login L6 = new Login(txtusername.Text, txtpassword.Text, CIP); ™\

L6.Validation();
if (LG.Empho == string.Empty)

{
}

else

{
UserActivityloe alog = new UseractivityLog(txtusername.Text
,Ixtpassword.Text, "Action”,CIP);
alog. task("Login");
// Login Sucessfull
FroActivity framain = new FrmActivity();
framain. Show() ;
} J
}

MessageBox, Show("Invalid username or password”);

}
i

Block A

e We have initialized the position of the form.

e String variable host Find host by name System.

e Gets a list of IP addresses that are associated with a host.

e Assigns the IP address to CIP.

e IbICP. Text is assigned the IP address to the label that will display the IP info.

Block B
e Close the login windows.
Block C
e Checking if textboxes are to not empty.

Block D

e Creating object LG that will activate the constructor of the class login with three parameters.
e Call the method validation using the object LG.

e Using "LG.EmpNo" public variable we check either user and password correct.

e Message box if information is not correct.

©2013 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

.i_’_i‘t

TR

e If information is correct then we will create object "alog" of the class UserActivityLog; it calls the constructor with
four parameters. 49
e Using the "alog" object we call the method task that will insert the data in the database. B
e FrmActivity creates the object of the form.
e Load the form using the object name frmmain.

Step 14

Insert the following code into the FrmActivity form.

©2013 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

using System;

using System.Collections.Generic;
using System.Componenthodel ;
using System.Data;

using System.Drawing;

using System.Ling;

using System.Text;

using System.Windows.Forms;

namespace UserActivitylog 00P Concept

public partial class FrmActivity : Form

{
public FrmActivity()

{
}

private void FrmActivity Load(object sender, EventArgs e)

{
this.Location = new Point(258, 200);
this.Size = new Size(389, 230);

}

private void BtnAddlew Click(object sender, Eveniirss e)
{ N
Login 1g = new Login();
UserActivitylog alog = new UserActivitylos(lg.getidinfo, lg.getpassinfo,
"Action”, lg.getipinfo);
alog. task("Addnew Record”);

InitializeComponent ();

hi

C#Corner

>-

} J
private void btnSave Click(object sender, EventArgs e)
{ &
Login 1g = new Login();
UserActivitylog alog = new UserActivitylos(lg.getidinfo, lg.getpassinfo,

"Action”, 1g.getipinfo);

>-

alog. task("Save Record"); J
}

©2013 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

50

private void btnDiscard Click(object sender, Eventirgs e)

{ N

Login lg = new Login();
UserActivityloz alog = new UserActivitylog(lg.getidinfo, lg.getpassinfo,

"Action”, lg.getipinfo);
alog.task("Discard Record");

} -~
private void btnLogout Click(object sender, EventArgs e) <
{

Login 1g = new Login();
UserActivityloz alog = new UserActivitylog(lg.getidinfo, lg.getpassinfo,

"Action”, lg.getipinfo);

alog. task("Logout"); »

Close();

e We have initialized the position of the form .

Tk

C#HCorner
51

e We create the object "alog" for the class UserActivityLog that will initialize member variables of the class
UserActivityLog using three parameters and the values of the paramters are the properties of the login class.
e The next step is to use a method "task"of the class UserActivityLog with parameter "Addnew Record".

Block B

e We have initlized the position of the form .

e We create an object "alog" for the class UserActivityLog that will initialize the member variables of a class
UserActivityLog using three parameters and the values of the paramter is the properties of the login class.
e The next step is to use the method "task"of the class UserActivityLog with the parameter "Save Record".

The same with the blocks, C, D and E.
Step 15
Now press F5. You will see the login screen; just enter:

user name: naveed.zaman
user name: khan@123

©2013 C# CORNER.

SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

hi L
i

TR

C#Corner
52
Login
naveed.zaman
AXXXKAKAXX
Login
System IP: 192.168.1.104
Click the login button.
| 8 FrmActivity
Add-New Discard
Now press the "Add-New" button, "Save" button, "Discard" button and then press the "Login" button.
Step 16
©2013 C# CORNER.

SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

.i_’_i‘t

t:ﬁ-{'ff-h
C#Corner
Now open then SQL Server table; you will get a result like the following:
53
UAL_User 1d UAL_Timestamp UAL_Function_Performed UAL_Other_Information UAL_IP_Address —
naveed.zaman 28/05/2013 8:34:22PM Logn 192.168.1.104
naveed.zaman 28/05/2013 8:34:23 PM Addnew Record 192.168.1.104
naveed.zaman 28/05/2013 8:34:26 PM Save Record 192.168.1.104
naveed.zaman 28/05/2013 8:34:31 PM Discard Record 192.168.1.104
naveed.zaman 28/05/2013 8:34:35PM Logout 192.168.1.104

10. Difference between Encapsulation and Abstraction

There is a very basic difference between encapsulation and abstraction for beginners of OOP. They might get
confused by it. But there is huge difference between them if you understand both the topics in detail.

Abstraction means to hide the unnecessary data from the user. The user only needs the required functionality or the
output according to his requirements. For example a digital camera.

Dear reader, whenever we use a digital camera, we just click on the Zoom In and Zoom Out buttons and the camera
zooms in and out but we can feel the lens moving. If we open the camera then we will see its complex mechanism that
we can't understand. So pressing the button and getting the results according to your demand is the abstraction.

©2013 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

C#Corner

54

—
. l

 Encapsulation |

Encapsulation is simply combining the data members and functions into a single entity called an object.

If we consider the camera example again, when we press zoom In/Out buttons, inside the camera it uses mechanisms
that consists of gears and lenses to zoom in or zoom out. The combination of gears and lenses is called encapsulation
that will help the zooming functionality to work smoothly.

In simple words we can say that "Abstraction is achieved through encapsulation".

Or

Abstraction solves the problem in the design side while encapsulation is the implementation.

Example:

©2013 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace DiffBetAbstractVsEncapsulation

{

class Program

{

“abstract class camera // Abstract class

{

' class camerazoom : camera

{
,” public int gear = @;

public int lenselocation = @;
public void zoomIn()

&

gear = gear + 4;
lenselocation = lensslocation + 2;
_picturesize = picturesize + gear * lenselocation;

. public void zoomOut()
{

gear = gear - 4;
lenselocation = lenseslocation - 2;
_picturesize = picturesize - gear * lenselocation;

public override int zoomresult // overriding property
{

get
' {
}

return _picturesize;

i
}
static void Main(string[] args)
{

camerazoom czoom = new camerazoom();
czoom.zoomIn();

Console.WriteLine("\nPicture Zoom In Result is = {@}", czoom.zoomresult);

Console.Writeline("More Picture Zoom™)
czoom.zoomIn();

Console.WriteLine("Picture Zoom In Result is = {@}", czoom.zoomresult);

consolc.wlteLlne("\n.."‘t."t..’*..!‘t...*t.\n");
czoom.zoomOut();
Conzole.Writeline("Reduce Picture Zoom");

Console.WriteLine("Picture Zoom Out Result is = {@}", czoom.zoomresult);

Console.ReadKey();

Output:

3
&

CH#

0O

orner

55

protected int picturesize = 100;
public abstract int zoomresult { get; }

 m—

\

L

J

©2013 C# CORNER.

SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

.'.*1..

C#Corner

Picture Zoom In Result is 56
More Picture Zoom
Picture Zoom In Result is

Ea Xl oot a ook okakokokotokatototatotatakokokal

educe Picture Zoon
Picture Zoom Out Result is = 132

Block A

e In this session we defined an abstract class.
e Having one protected variable and one function.

Block B

e In this session we have defined a class with an abstract class as the base class.

e With two public variables and two functions.

e One property zoomresult that is overriden from the base class

e In this block we have changed the value of the gear and lens in order to change the size of the _picturesize
variable.

e In this session we have created the object of the class camerazoom.

e Then we have called the method zoom in

e After that we have shown the output of the variable _picturesize using property.

e Then we again call the method zoom in and show the results of the variable _picturesize .
e Inthe final part we have called the method zoom out the picture and checked the result.

11. Interface

Dear reader, today we will discuss another important component of OOP, interfaces. This topic again confuses OOP
bginners. I have even found many questions in various forums regarding interfaces.

e What is an interface?

e When to use an interface?
e Why use an interface?

e Where to use an interface?

So I will explain interfaces with an example. When you press the "power" button of your machine, it's an interface
between you and the electrical wiring on the other side of its plastic casing. You press the "power" button to turn the
machine on and off.

©2013 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

C#Corner

57

In simple words, an interface defines how you can interact with a class, in other words what methods it supports.
What is an interface?

An interface is a programming structure/syntax that allows the computer to enforce certain properties on an object
(class).

When to use an interface?

This is a very important question for the new developer. For example we have a core banking system. We all know that
bank data is very sensitive. A little negligence is risky. So if the bank decided to develop a mobile banking web
application from a third party developer then we can't provide full access to our main core banking application. So we
must design the interface in our core banking application. You might use a DLL as well.

The other developers can use that DLL and send data for the transition in the main application. The third-party
developers only access the core banking application with the limited rights that we have given them in the interface. So
the interface is very useful in such conditions.

Simple Example
The following is the simple example:

using System;
using System.Collections.Generic;
using System.Ling;
using System.Text;
namespace Interfacelesson
{
class Program
{
interface [Supercar
{
/// Interface method declaration
bool smartcar();
}
class mercedes : ISupercar
{
public mercedes()
{
}

©2013 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

Y * M
i

L

C#HCorner

/// Interface method definition in the class that implements it
public bool smartcar()
{
Console.WriteLine("you have smart car");
return true;
}
}
static void Main(string[] args)
{
[Supercar mycar = new mercedes();
mycar.smartcar();
Console.Read();
}
}
}
Output:
cv file://IC:/Documents and
Block A
Block A is:
e In this sessoion we have defined the interface ISupercar.
e Has one method, smartcar, without implementation.
Block B
Block B is:
e In this sessoion we have defined the class Mercedes with the implemented interface ISupercar.
e Having one method smartcar with implementation.
Block C
Block Cis:
e Create one object of the interface using "ISupercar mycar = new mercedes();".
e Using that object "mycar" we access the method that we have defined in the class mercedes.
Why use an interface?
e Create loosely coupled software
e Support design by contract (an implementer must provide the entire interface)
©2013 C# CORNER.

SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

+.'+r-l:
"-:'--.

C#Corner

e Allow for pluggable software

e Allow objects to interact easily 59
e Hide implementation details of classes from each other

e Facilitate reuse of software

Where to use an interface?

C# does not support multiple inheritances. An interface on the other hand resolves the multiple inheritances problem.
One class can implement many interfaces.

An Advance Example
In this example we will create the two small projects. In the first project we will create a DLL file and define one interface.
In the second project we will call the DLL file that we have designed in the first project, then we will use the interface of

the first project. This will help us to understand the concept of interfces more clearly.

In this project our concept is very simple. We will create the core banking application concept and then we will create the
DLL of the core banking project and use it in the mobilebanking project.

Step 1:

Create the new project with the name of "learninterface" with project type Class Library.

New Project
Rocent Templates
T : Vel C2
3 Visua C2 ‘cﬂ Windows Forms Appcation Yisual C2 pe: <
o - A projyect for cresting a C# dass lbrary ()
1
Web 1| WEF Applcation Visusl C#
Choud
Repocting g Console Applcation Visual CF
Test |.c¢| Class Lirary Visusl C#
WCF S
Workfiow C#| WPF Browser Applcation Visual C#
& Cther Languages
-
Cther Project Types gj Empty Propact Visudl C2
+ Dotabase =
B Tost Projects E Windows Service Visual CF
Ordre Tenplstos
@S WoF Custom Contrdl Lirary Visual C#
Oc’] WOF User Cortral Lbeaey Visual C#
r———
-c‘“l Windows Forms Control Lbeary Visud C2
Naroe: .Ieun.duf;:_e |
Locatios ciocurmnts s setespaveediny doamectsivaul o 20\ IPromcs o)
Sclution name: leaeninkesface | [“Create drectcey for soktion
[JAdd to source control
Step 2:

We will rename Classl to Corebanking.

©2013 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

using Systes;

using Systee.ling;
wsing Systes . Text;

- nasespace learninterface

{

Step 3:

i

using Systes.Collecticns.Generic;

I: public class Corebaniing

FYTRH
A Sohtcey Warreerface’ (1 progect)
= 7 eaminterface
* i Propectes
& ol Refererves

4] Corebarbing.cs

.-'i_.it

.....
¥ haa

C#Corner

60

Now we will define the interface with the name of "Icorebanking" with the one method "void updatetransition(int a, int
b);" without implementation because an interface does not allow implementation of the method in the interface and it's a

good practice to always use the capital "I'" for the interface name.

Step 4:

Now we will implement the interface in a class Corebanking. So we must implement all the methods of the interface in

the class Corebanking.

public interface Icorebanking

{

void updatetransition(string cusld, string Ref, int amtdeposit, int amtcredit);

}

public class Corebanking : Icorebanking

{

public void updatetransition(string cusld, string Ref, int amtdeposit, int amtcredit)

{

Transition trans = new Transition();
trans.save(cusld, Ref, amtdeposit, amtcredit);

Step 5:

Add the new class with the name "Main".

SHARE THIS DOCUMENT ASIT IS

©2013 C# CORNER.

. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

.i_’_i‘t

C#Corner

Add New Item - UserActivitylog O0P _Concept

! Seet by
= Vsl C# Reets ~
9 Type: Vieusd Co Tb
Code ot l Class Visual C# Iteess i o8 e
Dsta n An orpty class defintion
v’
Gerweral ;C’ Interface Visual C2 [tems
Web
Windows Forms l Windows Form Visual CF toms
WeF
Reporting 52 User Control Visual C# Itess
Workflow
EC N 5] oo o —
] Usar Control (WEF) Visudl CF [teess
¥ | AboutBox Visual C# Iesns
3
Q, ADO.NET Erty Data Model Visual CF tooss
ey
Qo ADONET ErthyObiect Ganerstor Visual C# Itesas
v
4, ADONET Seif-Traghing EnRy Germeatce Visusl C# ems
Ed
! l Apphcstion Condigur stion File Visual C# [taes
%l Apphcation Manf est Fle Visual C# Itoms
|
H)_ accmtiy Informarion e, MW A X
L Noa: Main.cs
]
Step 6:

Now we will create the function GetDBConnection as a public function so it can be accessed from anywhere in the
project. But you must modify the data source setting according to your own settings.

For Example:

1. SQL Server instance name. (\\CRMIS)
2. SQL Server user name and password. (user id sa password.###Reno123)
3. Initial Catalog=PSH (database name)

Add the pubilic static class in the Main.cs:

public static SglConnection GetDBConnection()
{

SqglConnection conn = new SqlConnection(
"Data Source=.\\CRMIS;Initial Catalog=PSH;User ID=sa;Password=###Reno321");
return conn;

Step 7:

CREATE TABLE [dbo].[Transition](

[TRA_Customer_Id] [varchar](50) NULL,
[TRA_Account_Ref] [varchar](15) NULL,
[TRA_Amount_Deposit] [money] NULL,

©2013 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

61

. hi i

C#Corner

[TRA_Amount_Credit] [money] NULL
) ON [PRIMARY] 62

Step 8:

Add the new class with the name "Transition" and insert the following method into it.

Add New Mem - learninterface

Tnstaliod Yomplates Sotby: Defok v 1 | P
= Voo CF Rems ~
Types Visus C2 R
Code Cﬂ Cass Vol CF Rens e
Dta — An enply dass delndion
.
Gernedl > Irkedt ace Vigsd C# Rens
e Set]
Windows Foene } Wirdows Forn Visaal CF Reers.
WFF
Repoetin Lg User Cortrol Vi C# Reers
Workflon
ECTTE) oo -
<) User Cootrol (WFF) Vo C# ems
< Aoond Bax Veoudl CF Renrs
b
Q, FOONET Ertky Dita Model Viuadl CF Dorrs
v
Qo AOONET ErttyChmet Geome ke Vi <8 e
v
d, FOOMNET Soff-Tracking ErtRy Genmestor Voo CF Rerrs
v
b
_J Rppication Corfigur stion Fle Viosd C# Rems
'ﬁﬁl Zoph: ation Mand et Fle Vol C2 Rems
CA) accondie infcemation Fie Vo caoms ¥
Naeo. Thanaticn. s
=om

Step 9:
Now add the method into the Transition class.

public void save(string cusld,string Ref,int amtdeposit,int amtcredit)

{
string SQL = @" insert into psh.dbo.Transition
(TRA_Customer_Id, TRA_Account_Ref, TRA_Amount_Deposit, TRA_Amount_Credit)
values(

+cusld +" "+ Ref +","" + amtdeposit + "', + amtcredit + ")";
SqlConnection con = Main.GetDBConnection();

DataTable consultanttable = new DataTable();

SqglDataAdapter Consultantdataadapter = new SqlDataAdapter(SQL, con);
Consultantdataadapter.Fill(consultanttable);

Step 10:

Now add another project as shown in the diagram with the name of MobileBanking:

©2013 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

&
New Project...
Existing Project...
ng Ref, New Web Sie... _9
Existing Web Site... A
h.dbe.T Z 2
ef ,TRA_|] New Item... CirbShift+A
ef +7°,] Existing Item... Shit+AR+A <
Connect B)
w DataT 4 New Solution Folder
v vd .l.‘]

Add New Project
Recent Templates
Installed Templates

= Veud Co
Wiedows
‘Web
Clowd
Reporting
Sdvedight
Te
WCF
‘Workflow
Other Langusges
Cther Project Types

"

COriine Templates

MobleBarsing

Step 11:

dapter = new SqlDataAdspter(SQL, con);

Build Solution

Rebuld Solution

Clean Solution

Batch Build. ..

Configuration Manager...

Add

Set StartUp Projects...

Add Solution to Source Control...
Paste

Rename

Open Folder in Windows Explorar
Properties

WPF Applcation

Console Applcation

Clags Lbeary

Rl &l

g
J

Bl& 4 %]kl

WPF Browser Applcation

Emgty Project

Wirdows Seevice

WPF User Control Libeary

Windows Foems Applcation

WPF Custom Control Libeary

Winndows Foerns Control Lbeaey

C:\Documents and Settingsinaveedymy documenksivisusl studo 20101Projectslearninterface

i

i
S
I
Fé pmterface
ropevties
erences
ebanking.cs
aiN.C5
ansition.cs

Ctris¥

Alt+Enter
Ve ce Type: Veud C2

A project for crasting an applcation vith &
Windows Foens user interface
Visual C#
Visual C2
Yieusl Co
Visual C#
Yisudl C2
Visusl C#
Visual C2
Visud C2
Ysudl C#
"
©2013 C# CORNER.

SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

-"'"i‘ i
i

C#Corner

Solution Explorer v o X
=it 64
m Solution 'learninterface’ (2 projects)
=] @ learninterface

[+~ =d| Properties
[+ (=3 References
- <] Corebanking.cs
-] Main.cs
- <] Transition.cs
= @ MobileBanking
[+~ =d| Properties

Add Reference...

interface
Add Service Reference. .. soft.CSharp
. . - em
T «3 System.Core
«3 System.Data
«3 System.Data.DataSetExtensions
«3 System.Deployment
«3 System.Drawing
+3 System,Windows.Forms
«3 System, Xml
oo 23 System, Xml.Ling
= [Z] Forml.cs
‘7}_;] Form1.Designer.cs
‘?}_;] Form1.resx
- <] Program.cs

<€

Add Reference

| MET | cOM | Projects | Browse |Recent|

Look in: [E)Debug vJ ©) ? S
learninterface. dl

File name: lleaminterface. dll v ‘

Files of type: [Component Files (*.dll* tb;* olb;* ocx;” exe;” manifest) VJ

[OK][Cancel]

©2013 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

It's an important step. First we must add the referance of the DLL file to the MobileBanking project, then we will design

the form1.

Step 12:

Solution "learninterface’ Property Pages

" = Common Properties | O Current selection
Startup Project (3) Single startup project
e |
Sonirce Mias [1obieBanking (™Il
B Configrstian roigtee C)Mikicle Aatio projects)
Project Action
| learninterface None
MobileBanking None
[o

J L_tesly

Set the project startup type.

Step 13:

A

.....
¥ haa

C#Corner

©2013 C# CORNER.

SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

65

Thfi_

l--n_-\.
oY e

C#Corner

9l=1c3 66

Mobile Banking

i CURITER S Customerld 19.29233040-6 | accountRef 4345456756
: : Credit Amount | 50000 Deposit &mount D

[New || save || Ext |

Toxns rusiC'U

Now we need to design the form as shown in the picture to send data into the datecase using the interface DLL created
in the first project.

Step 14:

using learninterface;
- naxespace MobileBanking

public partial class Foral : Forn
{

public Forsi()

InitializeComponent();
}

privote void StaTranstion Click(object sender, Eventirgs e)
{
Icorebankin \objbank-nf,.:; ebanking();
objbank updotetronshicn(tx{(ustmrld Text, txtaARef.Text, Convert,Tolnt32(txtCredit.Text), Convert.TolInt32(txtDeposit.Text));

sagedox.Show(" Trancition Updated Sucessfully™);
3

private void BtnNew_Click(object sender, Eventirgs e)
{

txtCustomerid.Text = “;

txtARef.Text « “°;

txtlredit.Text = “8";

txtDeposit.Text = “@%;

}
private void btnExit Click(cbject sender, Sventirgs e)

Close();
}

In that step we will insert the following code into the button.

Step 15:

©2013 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

C#HCorner
67

— Mobile Banking

l TFXAS TRUST Customer Id 1.22233040-6 Account Ref | 4345-45675-6
Credit Amount | 50000 Deposit Amount ICI

[New Jl Save J[Exit]

Transition Updated Sucessfully

Now execute the project and enter the following data into the textboxes and click the Save button.

Step 16:

_MCBST-CRRS-NZ...bo.Transition* | Summary |

SELECT *
FROM Transition

TRA_Customer_Id = TRA_Account_Ref = TRA_Amount_Deposit | TRA_Amount_Credit |
1-22233040-6 4345-45675-6 50000.0000 0.0000
r¥ AEAL AELL AALL ALEL

Now check the database and you will see the following result.

12. Virtual Methods

Dear reader today we will discuss another important component of OOP, virtual methods. I will explain this using a
simple example. Fig (1.0) shows Class A having one virtual method AA and its implementation is a shirt with a yellow
flower. Class B inherits Class A and overrides the method AA; its implementation is different since it wears a different shirt

style with cap.

©2013 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

68

Fig (1.0)(Simple Virtual Example)

In simple words:

A virtual method is a method that can be redefined in derived classes. A virtual method has an implementation in a base
class as well as in a derived class. It is used when a method's basic functionality is the same but sometimes more

functionality is needed in the derived class.

Simple Example

©2013 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

P i
haan
C#Corner
I
namespace VirtualMethod
{
class Program 69
{
class Pay
public virtual void galculatepay(int basicpay.int houserent)
{ —
Consele.driteline("Ordinary Pay is : {0)}",basicpay + heuserent); | -
}
})
class Gradel : Pay
public override void calculatepay(int basicpay, int houserent)
{
Console.Mriteline(“Grade I Pay is : {@}", basicpay + houserent); | -
h
}
static void Main(string[] args)
{
Pay refl = new Pay();
refl.calculatepay(5000,3000);
Pay ref2 = new Gradel(); !
ref2.calculatepay (15000, 9000);
Cansels.ReadKey();
}

806006
rade I Pay is : 240060

Block A:

e In this sessoion we have defines the class Pay.
e In that Pay class we have one virtual method calculatepay.
e Now we have the implementation of that calculatepay method that will calculate and print the pay.

Block B:

e In this session we have defined the class Gradel that inherts the class pay.
e After that we have overriden the class calculatepay having the same signature.
¢ Now we have the implementation of that calculatepay method that will calculate and print the pay.

Block C:

e First we have defined the object of the class pay, then we call the methods of the class pay with two arguments
that will calculate the ordinary pay.

e Then we will again create the object of the Gradel class and using that object we call overrode the method
calculatepay.

©2013 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

i
C#Corner

Real Example:

In this example we will create the small application that will calculate the tax of the gross pay. In our application we allow
the tax exemption for employees whose age is greater than 50 years.

Step 1:

Create the new project with the name of LearnVirtualMethod.

New Project

Recect Temolates 'gr F-vmk4 v Sotby: NU‘R
Installed Templates ; 2 &
: Vil C#
3 Vsl C# .ctl Wirdows Forms Agokstion Vsl Co o
= A project foe creating an appication with 3
Windows e Windows Forms uger nterface
Web g WEP Appe ation Visusl C#
Coud
Repoeting g Cornole Aophabon Vol Cr
Siveright —
Tok ‘.oﬂj Class Libeary Visusl C#
WCF il
Woekflow CF WS Browser Appicotion Vel Ce
. lmlmm BA
Other Project Types | Lroty Promat Vsl C#
+ Datadase -
| —
¢ Tost Projects cf| windows Service Veual G2
e
@F Wor Custom Cortrol Lirary Vsl C#
cc‘I WEE User Control Lbeary Vel G2
el
=CE| Windows Foems Coctrel Lbeary Veual C#
Roma: '-?‘.'"V-""“’, et '°'°.-.
Recation: | c:\docummants and settingsnaveediy documaeksivissal udo 20101Projects v
Soktion nome: menm | [“)Creste drectory for sohtion
[TJAdd to seurce cocerol
o]
Step 2:

Design the form1 as shown in the picture.

©2013 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

t® Calculate Tax

Calculate Tax

Year 2013-14
[[] Age Over 50 Year

Gross Pay ‘U

Calculate Tax

Tax Amount i

Tax Slib |

Close

Step 3:

Create a new class with name of tax as in the following. Having one virtual method calculateTax.

class tax

{
protected decimal _taxrcate = ©;

protected string _slab = "Tax exemption™;

public virtual void calculateTax(int
1

if (grosspay > 50000 && grosspay < 79999) { _taxrcate = 5.0M; _slab = “"Slab 1"; }
else if (grosspay >= 80000 && grosspay < 119999) { _taxcate = 5.5M; _slab = "Slab 2"; }
else if (grosspay >= 12e0e0) { _taxcate = 6.5M; _slab = "Slab 3"; }

grosspay.)

-

public decimal gettax 3
1
get
1
return _taxrate;
¥
¥
public string getslab
1
get
1
return _slab;
¥
¥
1 J

\

=

i

N
ol 1

C#Corner

71

©2013 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

i

CH#Corner
class galtax : tax ~ 72
{ o
public override void calculateTax(int grosspay)
{
_taxrate = 0.0M; >
_slab = "Tax exemption";
}
} y,
Block A:

e In this session we have defined the class tax.

e In that tax class we have two protected variables.

e Now we have created one virtual method, calculateTax.

e Then we have implemented the method calculateTax using an if statement that will assign the values to the
variables.

Block B:

e In this session we have defined the two gettax and getslab properties that will help to get the result.

Block C:

e In this session we have defined the class caltax that inherts the class tax.
e After that we have overriden the class calculateTax having the same signature.

e Now we need to implement the calculateTax method to calculate the tax for the employee whose ages is greater
the 50 years.

Step 4:
Enter the following code in the (Calculate Tax) button.

if (chkage.Checked == true) \
1
caliax tax = new galtax();
tax.calculateTax(Convert.ToInt32(txtGrossPay.Text));
IxtTaxAmt.Text = tax.gettax.Tosteing();

txtSlab,Text = tax.getslab; >
i e
else {

tax taxl = new tax();

taxl.calculateTax(Convert.ToInt32(txtGrossPay.Text));
ExtTaxAmt.Text = taxl.gettax.ToString();
txtSlab,Text = taxl.getslab;

; J

Block A:

e In this session we have used an if statement that will determeine whether to create the object of the virtual
method or overriden method.
©2013 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

.-'i_.it

.....
¥ haa

C#Corner

73
Step 5: _

e Then it will calculate the tax and return the result in text boxes.

To execute the program press F5 and enter the gross pay 70000 and click on the button.

The calculated tax will be shown as in the following result.

t® Calculate Tax

Calculate Tax

Year 2013-14

[] Age Dver 50 Year
Gross Pay | 70000

Calculate Tax

Tax Amount [5.0

Tax Slib |Slab 1

Step 6:
Now click the check box button and again click the click button Calculate tax.

You will get the following result.

©2013 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

.i_’i‘t

Calculate Tax E]@ 74

f \ Calculate Tax -

Year 2013-14

Age Over 50 Year
Gross Pay | 70000 |

Calculate Tax

Tax Amount {U.D |

Tax Slib Tax exemption

Close

13. Delegates

Dear reader, today we will discuss another important component of OOP, which is delegates. It's the modern approach to
call methods. Using that approach you can call any method with the same signature as the delegate. So we can say that a
delegate is the launching pad for methods; any method can be launched that matches the pattern. Or a Delegate is a
class. When you create an instance of it, you pass in the function name (as a parameter for the delegate's constructor) to
which this delegate will refer.

In simple words, a delegate is a type that safely encapsulates a method; a delegate is a pointer to a method. Just like you
can pass a variable by reference, you can pass a reference to a method. Delegates are often used to implement callbacks

and event listeners. A delegate does not need to know anything about the classes or methods it works with.

A Delegate consists of the following three parts:

e Declare a Delegate
e Instantiate the Delegate

©2013 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

i
fi

ll_‘.:‘_:_ﬁn:
C#Corner
e Execute the Delegate
75
Hello!lam
Simple Example 1:
©2013 C# CORNER.

SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

hi L
i

TR

C#Corner

using System;

using System.Collections.Generic; 76
using System.Ling;

using System.Jext;

namespace Delegates

public delegate double Delegate Prod(int a, int b);} .
¢lass Program

{
static double totalcost(int amount, int servicecharges)
{
return amount + servicecharges;
by
static void Main(string[] args)
{
Relsgats Prod delObj = new Q;A;gazswaaagiiatglsggx);\
Consele.Wite("Total cost of car is :");
int vl = Int32.Parse(Console.Readline());
Consale.Write("Service charges on car :");
int v2 = Int32.Parse((ansels.Readline());
//use a delegate for processing
double res = delObj(vl, v2);
Consedsabiniteling("Price of Car :" + res);
Consele.Readline();
) J
H

cv file:/f/C:/MDocuments and Settings/

Total cost of car is :5000
Service charges on car :3000
Price of Car :8000

Block A:
e In this sessoion we have defined a delegate with the name Delegate_Pro with two parameters.
Block B:

e In this sessoion we have defined the method totalcost with parameters.
e In the implementation of that method we have the sum the two values and return that.

Block C:

e First we have defined the object of the delegate passing method as the parameter.
e Then we will input two parameters from the user and save them in two variables.

©2013 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

C#Corner

e Now we will activate the delegate using the object we created and save the result in another variable.
e In the end we will show the result in the console. 77

Events

A hook on an object where the code outside of the object can say "When that something happens, that fires this event,
please call my code".

Simple Example 2:

using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Drawing;

using System.Ling;

using System.Text;

using System.Windows.Forms;

namespace @event

{

public partial class Form1 : Form

{
public int a=1;

public Form1()
{

InitializeComponent();
this.buttonl.Click += new System.EventHandler(this.button1_Click);
this.buttonl.Click += new System.EventHandler(this.button1_Click);

}

private void buttonl_Click(object sender, EventArgs e)
{

MessageBox.Show(a.ToString());
a++;

Output:

©2013 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

C#Corner

78

Click Me

Event Execute MNo :1 Event Execute No :2 Event Execute No i3

[oc |

In the preceding example we have defined the simple event on button click. When we click the button once, it will display
the message box three times or call the click event three times.

Delegate and Events
The best uses of delegates are in the events and we have daily use delegates with events without knowing them.

Simple Example 3:

©2013 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

-I.++

Ry

C#HCorner
using System; 79
ifeLine(“Got Five Number”);
¥ /
static void Main(string[] args) \
{
ser{Cailback);
:’».)
Output:
cn file:/H/C:/Mocuments an
5
Got Five Number
g
0
1
8
Block A:
e In this session we have defined a delegate with the name OnEventHandler with two parameters.
©2013 C# CORNER.

SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

C#Corner

Block B:
80
e In this session we have tagged the delegate with the event FiveEvent.
e We have defined the method Gotfive. In that method we have activated the delegate using FiveEvent(this,
EventArgs.Empty);
e Another method callback having the same signature with delegates.

Block C:

e In this sessoion we have defined an object of the class FEvent that is fevent.

e Using that fevent we have instantiated the Delegate with the callback method.
e Create the object of the Random class with the name of random.

e We use a for loop and generate five numbers using the random object.

e It will check the numbers; for each one that's five, it will activate the delegate.

Thank You I hope you like this E-Book.

©2013 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

