

©2014 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

2

Introduction to Mongo DB
This free book is provided by courtesy of C# Corner and Mindcracker Network and its authors.
Feel free to share this book with your friends and co-workers.
Please do not reproduce, republish, edit or copy this book.

RamaSagar

.NET developer

Sam Hobbs

Editor, C# Corner

http://www.c-sharpcorner.com/

©2014 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

3

Abstract

Mongo DB (from "humongous") is a cross-platform document-oriented database system. Classified
as a NoSQL database, Mongo DB eschews the traditional table-based relational database structure in
favor of JSON-like documents with dynamic schemas (Mongo DB calls the format BSON), making the
integration of data in certain types of applications easier and faster.

It has been written in C++ as a document-oriented database, so it manages collections of JSON-like
documents.

Mongo DB supports cross-platform support (Windows, Linux, Solaris). It also has a rich set of data
types (supports dates, regular expressions, code, and binary data).

Mongo DB uses memory mapped files. For Windows the data size is limited to 2GB on 32-bit
machines (64-bit systems have a much larger data size).

Note:

 Most resources discussed in this paper are provided with the Mongo DB package. For a
complete list of documents and references discussed, see “Resources and References” at the
end of this document.

 for up-to-date documentation, Mongo DB news, and online community, see
http://www.mongodb.org/

©2014 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

 4

Contents

Introduction to the Mongo Database..05
Exercise 1: Setting up the server ...09
Task 1: Download & Installation..09
Exercise 2: Command Line Options……………..13
Task 1: Know Different commands..14
Exercise 3: Install as a service……………………………………..18
Exercise 4: Replica Set………………………………………………..23
Exercise 5: Mongo Shell...…………………………………………..18
Exercise 6: Storing Data ...………………………………………….......................................18
Exercise 7: Updating Document... ……………………………..18
Task 1: Using Find and Modify…………….. 18
Exercise 8: Finding Documents....……………………………..18
Exercise 9: Cursor Operations...….……………………………...18
Exercise 10: Indexing.....................……………………………..18
Resources and References...21

©2014 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

5

Introduction to the Mongo Database

Databases are important of every internet and enterprise applications

For scale speed and fast application development has brought on a new breed of databases broadly
turned to no sql databases

This tutorial introduces the basic features of the Mongo DB with a series of exercises that show

 What no sql means versus relational databases.

 We will get the mongo server up and running

 We will know how to connect to database manipulate some data save & update and

 We will see how to use indexing to speed up the query time and review some indexing
strategies...and some miscellaneous points along the series...

The main pros of Mongo DB can be divided in the following three:

 Flexibility

 Performance

 Scalability

The last section of this tutorial provides a brief exercise to introduce you to Mongo DB with Asp.net.
It shows how to perform CRUD operations

©2014 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

 6

Prerequisites

To take advantage of this tutorial, you should be familiar with the following:

 Microsoft® Visual Studio® 2010

 C# programming language

 NET Framework

 Basic practices for building, debugging, and testing software

Computer Configuration

These tutorials require that the following software components are installed:

 Windows® 7, Windows Vista®, or Windows Server® 2008 R2 or later operating system

 Visual Studio Professional 2010 or later

Getting Help

 For questions, see “Resources and References” at the end of this document.

 If you have a question, post it on the C# corner forum.

©2014 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

7

Mongo DB vs RDBMS

As developers we want database that is easy to use. Relational databases save data in tables and

rows. Our application hardly ever does, this means alignment of application layer objects to tables

and rows is called impedance mismatch as shown below...

In the above figure we can notice that it has an object containing a field x and a field tags which
contains bunch of strings...if we want to save in relational database we will create three tables one
for the main object and other for the tags and other to map the tags to the main object. This forces
us to write a mapping layer or use an ORM to translate between our object and memory and save
into the database...

Many of us develop applications using object oriented concepts. Our objects are not simply tables
and rows. And we may use polymorphism or inheritance our objects are not uniform...mapping
those into table and rows are quite a bit of pain...

©2014 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

 8

In mongo dB there is no schema to define...there are no tables and no relationships between
collections of objects, every document we save in mongo can be flat and simple and as complex as
the application requires. This makes life as a developer much easier and the application code much
cleaner and simpler...

 Mongo DB has no schema no tables no rows no columns and certainly no relationships
between tables.

 In mongo DB we have single document write scope, a document lives in a collection but
updating documents occur one at a time.so if any locking needed to occur it would be
much simpler there is no need to extend locks across collections there are no relationships to
enforce.

 Mongo also offers a special collection called capped collection which have a fixed size and
automatically overwrites old documents.

©2014 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

9

Exercise 1: Setting up the server

Mongo DB is open source software which can be found on web through mongodb.org…From there

we can download a distribution suitable to our platform. Mongo DB is written in C++…It’s available in

both 32 and 64 bit editions.

Open Mongodb.org click on downloads and select the suitable version

©2014 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

 10

Unzip into a directory and we can find a bunch of executable files. Here a folder is created in C: drive

and unzipped the files.

 Now open the cmd prompt and fetch into that directory

©2014 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

11

Before we would run mongo server for first time we need to create a directory where the data files
will reside .The default name for the directory is data...

Type the command

md \data\db

Once the directory exists we can simply run the mongo server without any more command line

arguments...

Type: mongod

©2014 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

 12

Where d is the daemon

Mongo has started initialize data in that directory and it is up and running open on port 27017. We
can start it using now.

This was simple isn't all we have to do is to create a directory where mongo stores the data files and

then start the daemon, with many other databases and packages we have to do prerequisite

installations that’s not the case with mongo all we need to do is to run the mongo daemon there are

no other operating system installations and no other frameworks or dependencies to be installed.it

all compiled in c++ and available in single executable file.

©2014 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

 13

Exercise 2: Command Line Options

Mongo has many command line options we can use let’s look at few

Type the following command

Mongd --help | more

©2014 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

 14

 It has the ability to log more verbosely or less into a specific log file

It has the ability to run on a different TCP port.

We can have more connections.

We can specify different directory where data files should reside.

Let us see how to specify different directory and to provide high verbosity level which logs

everything.

©2014 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

 15

We will have to specify a different data directory so let’s create that directory

Type

md \csharpcorner\db

 Now let’s create a Text document inside csharpcorner folder

©2014 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

 16

The above is the configuration file being used for the mongo server. Data files will be residing in the
csharpcorner db directory and store in log in csharpcorner/mongo-server.log and to log very
verbosely am specifying 5 v's here where 1 being least verbose and 5 being most verbose.

Now we are ready to start the mongo server using the configuration file

Type

mongod -f c:\csharpcorner\mongod.conf

-f for the configuration file

c: is the path where the configuration file exists

©2014 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

 17

The server is started and it is indicating that all its output is going to log file which we have provided

We can also inspect what is in that log file by the command

more c:\csharpcorner\mongo-server.log

It was showing all the verbose logging that the server produced

©2014 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

 18

Exercise 3: Install as a Service

Till now we have been using the commands to start and stop the mongo server. If we want the
mongo server to be running all the time may be even when the system starts up. On a windows
machine we can install mongo as a service.

Let’s look installing it as a service

We have already created a configuration file

Open command prompt in administrator mode fetch to the mongo directory and type

the following command

mongod -f c:\ csharpcorner \mongod.conf --install

©2014 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

 19

It’s installed as a service

We can start the service by issuing net start mongodb

If we want to check the mongo server is running or not we can use the following command

net start | findstr Mongo

We can find the Mongo service listed as shown below

We can also stop the service by the following command

net stop mongodb

©2014 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

 20

That’s it now we have the Mongo server up and running we can connect to it using the mongo shell.

Since we are running the server on local machine and on default port we no need to specify any

command line arguments to the shell, we can simply connect by typing mongo.

Let check the database inside mongo lets connect to server and we can check the databases by the
command

show dbs

It will show that we have exactly one local database...

©2014 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

 21

Exercise 4: Replica Set

A replica set in MongoDB is a group of mongod processes that maintain the same data set. Replica sets provide

redundancy and high availability, and are the basis for all production deployments.
Sometimes things don't always go our way...sometimes our server may crash and when that

happens...what happens to our application??

 If we have a backup we will spend some time and will restore the data which is a traditional way of

doing.......

 But we can do much better than that where the replica set of mongo dB comes into role.........

http://docs.mongodb.org/manual/reference/program/mongod/#bin.mongod

©2014 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

 22

Mongo dB supports an arrangement called a replica set, the members of replica set are primary

,secondary or number of secondary’s and potentially an arbitrary. Let’s look at the rows of each one

of those in a replica set.

The primary database is the one and only writable instance in a replica set that means any of the

clients that want to write data to the database have to be connected to the primary and have to

issue write commands against the primary, An attempt to write to secondary will fail...

The secondary databases are read only instances…we can have many number of secondary

databases this means that we also have scalability because we can perform many more reads against

the replicas rather than attacking a single server with all requests for crud operations..

In the secondary databases the data is going to be replicated from the primary eventually which we

call eventual consistency. At some point, if primary database is failed one of the secondary will take

over and will become the primary where we can get automatic recovery from the crash of the

primary…..

The third type of member in replica set is the arbiter. Arbiters are mongod instances that are part of

replica set but do not hold data. Arbiters participate in elections in order to break ties. If a replica set

has an even number of members, add an arbiter.

Arbiters have minimal resource requirements and do not require dedicated hardware. We can

deploy an arbiter on an application server, monitoring host.

©2014 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

 23

Now let’s create the databases and see them in action...

Here we going to create three directories in our csharpcorner directory named db1, db2, db3

Now let’s start the three instances give the command

@REM Primary

start "a" mongod --dbpath .db1 --port 30000 --replSet "demo"

@REM Secondary

start "b" mongod --dbpath .db2 --port 40000 --replSet "demo"

@REM Arbiter

start "c" mongod --dbpath.db3 --port 50000 --replSet "demo"

©2014 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

 24

Exercise 5: Mongo Shell

The mongo shell is an interactive JavaScript shell for MongoDB, and is part of all MongoDB distributions.

The Shell is simply an application that allows us to interactively get insight into what the mongo
server is doing?

The shell uses the same wire protocol as our application would have. It’s simply another application
that talks to mongod and is able to understand the wire protocol but it provides many capabilities...

http://docs.mongodb.org/v2.2/reference/mongo/#bin.mongo
http://www.mongodb.org/downloads

©2014 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

 25

Let’s see some examples:

If we wanna rotate the log file we can provide the command

mongo localhost/admin --eval "db.runCommand({logRotate:1})"

©2014 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

 26

We can notice a return of object object on screen if we wanna know what that thing we can provide
the command

printjson (which prints the result of the command)

 We can wrap it around our orginal command

mongo localhost/admin --eval "printjson(db.runCommand({logRotate:1}))".

It was trying to tell us that everything is ok...

©2014 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

 27

Exercise 6: Storing Data

First let us talk about how data is stored by the engine…Now if our application wants to interact with

some information that information is a memory in our application…It can talk to the server and the

server has preeminence storage named in the disk….

©2014 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

 28

Mongo uses Memory mapped Files the server cannot store all its information in memory. But it
would like to think of information has just existing in being available to it at any given moment. So
what it does is it creates a Mongo server and maps it using memory mapped files whenever it calls it
into play a portion of that array the operating system takes care of loading it or saving it to the disk.
When we want to store a bit of information we handle it over the server, and the server scribbles it
over a memory and that memory gets managed and serialized to disk... The same process in reverse
happens when we want to read data the server will attempt to access a portion of the large byte
array which will be loaded as needed from the operating system...

so now byte arrays can be stored on disk...now the question arises here..How does our document
which doesn't have schema that get saved and what format does it get saved??

The answer is BSON...The BSON specifications can be found on http://bsonspec.org/

The BSON data format has several advantages some key advantages are that there is very
little marshaling necessary from BSON elementary data types into c data types that makes reading
and writing very fast in any of the programming languages. We can learn more
at http://bsonspec.org/.

Rules for saving data

Rule 1: A document must have an ID field._id every document in mongo must have an Id if we save
one without an Id mongo will assign an id field, but every document we save must have an ID...

Rule 2: The size of the document in Mongo is currently limited to 16 Mega Bytes. If we need to store
more than that
We will have to store across multiple documents. This is something that may evolve in future
releases. But this is the current limitation...

©2014 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

 29

Saving Data

We are in some default database where dB is our current database…Lets us first check if there is any

data in there we can do it by issuing a command as shown below…

The image indicates there are no collections. A collection in mongo defines the scope of interaction
with the documents.so we can issue commands against a specific collection to store and retrieve
data. Because it’s not a relational database we cannot issue commands across several collections…

Ok now let’s save our first record

db.foo.save ({_id:1, x: 10})

Here dB means the database name where we are operating.

Foo is the name of the collection we are going to save this document into

Save indicates the saving of record.

We can find the document we just saved by issuing the command

©2014 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

 30

db.foo.find ()

Now if we check the collections we will have two collections one is foo and other is system. Indexes.

Every document must have an id that’s because in order to have fast access we want an index in an
Id field.

Let’s insert same record into student collection

db.foo.save ({_id:1, x: 10})

Now if we see the collections we can have the following result

©2014 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

 31

Let’s check the indexes by issuing command

 db.system.indexes.find ()

We can see mongo has created an index on the Id field the key is id on the test foo and test student
collections inside the database…

Let us see what data field the id supports...

Mongo can have an id that is numeric, an integer, a floating point or a UTC date time structure.as
shown below…

©2014 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

 32

db.foo.save({_id: 1})

db.foo.save({_id 3.14})

db.foo.save({_id "hello"})

db.foo.save({_id ISODate()})

The only data type which is excluded is an array if we try to use an array it throws an exception as

shown below.

©2014 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

 33

Exercise 7: Updating Document

The mongo update command is atomic within a document. No two clients may update the same
document at the same time, two update commands issued concurrently will be executed one after
another. Here is the syntax of the update command...

First we have to specify which collection we going to update

Second we will need to specify which document we are targeting

Third we will need to specify what change we want to see in active i.e. update parameter

Lastly we may specify other options such as do we want to change only one the first document
found matching the query or do we want to upsert(do we want to save a new record in case the
query doesn’t match any document will generate the document on the fly)

©2014 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

 34

Let’s see them in a practical example

First let’s save a record with the id 1 and a value x of 10...

db.a.save({_id:1, X:10});

Here we use the increment operator which takes the field name and the amount of which we want

to implement.

db.a.update({_id:1, {$inc:{X:1}});

©2014 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

Now let’s check the value

db.a.find()

In the second scenario one client wants to add the field to the document while another client is
trying to implement. So we already have our self a record in there with only one field x=10.

// db.a.save({_id:1, x:10});

Now comes along the client that wants to add the field…we can issue a update command...and again
the same client want to increment the value of x we can specify only the x to be incremented as
shown below

db.a.update({_id:1},{$set:{y:3}})

db.a.save({_id:1, {$inc:{x:1}})

©2014 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

ok right now we have the fields x and y now if we wanna remove the field y we can issue the unset

command the unset command takes the field name and a arbitary value.

db.a.update({_id:1},{$unset:{y:''}})

or

db.a.update({_id:1},{$unset:{y: 0}})

©2014 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

Now let’s consider some array operations

We can see below that I have a document with only an id field

db.a.save ({_id:1});

Now if we want here an array containing some values in this document

We can issue the update with the push command to add an item to an array

db.a.update ({_id:1}, {$push :{ things: ’one’}});

Let’s put some more items

db.a.update ({_id:1}, {$push :{ things: ‘two’}});

db.a.update ({_id:1}, {$push :{ things: ‘three’}});

db.a.update ({_id:1}, {$push :{ things: ‘three’}});

©2014 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

We can find that it has the element three twice that might be something we don’t want.. We can

restrict it by using addToSet operator

db.a.update ({_id:1}, {$addToSet :{ things: ‘four’}});

We can notice that the element four didn't added again

We can still see three is hanging in which we doesn’t need we can remove it out of the array by using

pull operator and can add it again as shown..

db.a.update ({_id:1}, {$pull :{ things: ‘three}});

It will delete all the instances of three in the array as shown below

©2014 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

Now if we want to remove the last element and first element in an array we can use pop operator as
shown below

For last element

db.a.update ({_id:1}, {$pop :{ things: 1}});

For First element we can use negative value

db.a.update ({_id:1}, {$pop :{ things: -1}});

©2014 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

Now let’s consider a scenario where we had multiple records in the database...if we wanna apply an

update to several of them.

Let’s see if we want to push another element in them using the update command with an empty

query we can do it

©2014 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

db.a.update ({}, {$push :{ things: 4}});

But we can see that only one record was effected this is because the default options of an update is
fixed to one record.

We can fix it by using the multiple options true

db.a.update ({}, {$push :{ things: 4}},{multi:true));

©2014 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

If we want to effect exactly one record there is more concise command called find and modify.

Here is the signature of find and modify command

Collection name: - we need to know which collection we are looking into

Document:-we need to look which was the exact document we want to modify

Query order:-sort order of the document if we want to specify multiple documents

What change:-we need to specify what the change we want to make to the document we may want
to upsert (set the upsert true) meaning create a new record if one doesn’t exist

Delete it:-we can remove the document which deleted the record.

©2014 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

Return new:-Find and modify also returns the record that we are going to update from the database.
By default find and modify returns the version of the before the change is made to it...if we set new
to true it will return the document after the change was made to it.

 Let’s create a query in object mod

var mod={

 "query" :{

 "things" :1

},

"update":{

"$set" :{

"touched":true

}

},

"sort":{

"_id" : -1

}

}

©2014 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

The object mod has query finding something that has things with element 1.it has an update it
wanna set the field touched to the value true...and it wanna sort by id in descending order as shown
below..

Now if we issue the command

db.a.findAndModify(mod)

we get the document before it is modified as shown below and the current state is it has the

touched field which we have just appended to it.

©2014 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

Now let’s set the touched field to false but this time lets return the record after it was modified

mod.new=true

Update touched field to be false this time

mod.update.$set.touched=false

©2014 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

Now let’s find the document

db.a.findAndModify(mod)

It returns the document after the modification as shown below

©2014 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

Now let’s sort to find the first record for that we can issue the command

mod.sort._id=1

©2014 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

We can see that the document with id 1 has been modified.

©2014 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

Exercise 8: Finding Documents

It had a query parameter and a projection parameter. The query parameter is a filter it defines the
matching criteria to run against the documents

The Projection parameter defines up those documents to which part to be returned which is
optional.

We will start using the find command which we have seen in previous articles.

If our document is containing huge data and we want to retrieve only some data from it we can
specify a projection to which fields we want to return as shown below...

©2014 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

Here our animal database contains all the animals from 1 t0 6 so now let’s find all the animals by

issuing a commands shown below…

©2014 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

Here the gt operator means greater than and lt operator means less than

Also gte means greater equal and lte less than equal

So we can use these operators to query our database as shown above

We can also specify a range

We can also provide the matching query

Here we can see that we are finding the documents which are 1 and 3 and the same in opposite

©2014 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

Our animal document contains a tag field and the tags field contains an array of tags

So let us see how to match among those…

We can notice that we are finding the tag field of tag which matches cute

©2014 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

Now let’s find animals who are cute or in the ocean we will get some animals which are cute and

some which are in ocean but not necessarily both of them as shown below ….

Now if we want to insist that there would be both ocean and cute tagged we can issue the following

command by using all operator as shown below…

If we want to find the document which are none in the tags we can use nin operator as shown below

©2014 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

Exercise 9: Cursor Operations

For example if we issue the query as shown

The shell has enumerated all other documents matching the criteria.

Now let’s capture this cursor into a variable and we can look at the cursor size as shown

To support iterating to the cursor we can query the cursor whether it had items we can see that it
had items as shown

©2014 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

If we want to iterate to the cursor in mongo db we have the foreach method as shown below

So we iterated through the whole cursor and for each one we executed a function

Sorting

The more obvious and popular cursor option is sorting

Now let’s find some animals in our animal’s database and retrieve their names and sort them by the name

©2014 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

The sort direction positive is ascending and negative is descending

©2014 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

Exercise 10: Indexing

First let us assume we have a collection named foo and we want to find all the collections with 10 for

the value of the field x.

So we say:

db.foo.find({ x :10})

Now let us think, what does the server do to find the document?
The server will visit each and every document and check the value of x is equal to 10 and if so return
it. That's an over-simplification but it shows us the problem. We will need to scan every location on
disk to dig up every document and compare the value of the field x. That is a very, very slow
operation and if we want to do it quickly then we need to find a better strategy. Indexing is done by
Mongo by storing all the documents in its own location on disk. An index logically holds a mapping to
those locations from field values. In the preceding example an index on field x of the collection foo
has an entry of each possible value of x associated with a list of document locations and each of

 those documents contain a value or key. So for example we have a bunch of documents with x
equaling 9 and x equaling 10.

©2014 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

We will design a query to find the documents where the field x matches the value 10. Mongo will
look in the index to find the entry whose value is 10 and jump directly to that document. This is
much much faster than scanning the entire disk and much much faster than loading each and every
document.

Regular Indexes

The regular index is an index that we can use on a single or multiple field with multiple values as
well.

 Compound Indexes

 A compound index includes more than one field of the documents in a collection.

Multikey Indexes

©2014 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

 A multikey index references an array and records a match if a query includes any value in the array.

 Geo Indexes

 The geo index is optimized for geographical queries. This supports proximity of points to the center.

 Text Indexes

Text indexes allows us to do the things like search engines do, parsing text queries and comparing
them against text fields.

 Time to Live Index

This supports Expiring documents using a TTL index we can designate a date time field on our
document to be an expiration date and Mongo will automatically remove the document from our
collection when it expires. This again reduces our overhead in writing all kind of patch works in
removing our self.

©2014 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

Getting Started With MongoDB and ASP.Net

Create a simple ASP.NET application that retrieves data. You can have a look at my other articles of
MongoDB from here.

Installing Mongo db

Installing MongoDB in Windows is very easy and simple. Use the following procedure to get it
running:

 1. Download MongoDB for Windows from "http://www.mongodb.org/downloads".

2. After downloading, create a folder named MongoDB and extract the Zip file into that folder.

That’s all. MongoDB is now installed. We can find many files in the folder but the key files are:

 mongod.exe: The Mongo database

 mongo.exe: The administrative shell

 Mongos.exe: The sharding controller (Sharding is the process of storing data records across
multiple machines and is MongoDB’s approach to meeting the demands of data growth.)

Now let's get started by setting up the server and creation of a database; use the following
procedure to do that.

 Step 1: Open the command prompt in administrator mode as shown and go to the MongoDB’s
directory. (The folder where we extracted the Zip contentto.) For mine, the folder name
is mongodb.

https://www.google.co.in/search?q=mongodb+in+.net&oq=mongodb+in&aqs=chrome.0.69i59j69i57j69i60l3j0.6496j0j7&sourceid=chrome&espv=210&es_sm=122&ie=UTF-8#q=mongodb+dotnetfunda
http://www.mongodb.org/downloads

©2014 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

 Step 2: Type "mongod" and press Enter. And Mongo DB has started. It uses port 27017 by
default as shown below.

©2014 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

 Step 3: Now open another command prompt and go to mongodb’s directory. Type "mongo".
This command will connect to the default test database.

 MongoDB is schemaless and contains no table or relation. It maintains a collection of data. So, for
now to keep things simple, Let's create a “Students” collection in the “test” database with a student
“studentId = P1 and Name = Anonymous”. Just type the following command:

db.students.insert({studentId: "P1",Name:"Anonymous"})

©2014 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

Let's check whether or not the students collection was created by issuing the command:

show collections

 Let us find the data in the collection by issuing:

 db.students.find()

We can see our data in the collection.

Now let's us retrieve the data using an ASP.NET application.

Create an ASP.NET application and and add the mongocsharpdriver using the package manger
console as shown below.

Install-Package mongocsharpdriver

©2014 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

Now let’s define the connection string for the MongoDB server. By default, it runs on the port

27017, so, define the connection string inside the "web.config" file as in the following:

1. <?xml version="1.0" encoding="utf-8"?>
2. <!--
3. For more information on how to configure your ASP.NET application, please visit
4. http://go.microsoft.com/fwlink/?LinkId=169433
5. -->
6. <configuration>
7. <system.web>
8. <compilation debug="true" targetFramework="4.5" />
9. <httpRuntime targetFramework="4.5" />
10. </system.web>
11. <appSettings>
12. <add key="connectionString" value="Server=localhost:27017"/>
13. </appSettings>
14. </configuration>

Our application is now ready to communicate with the MongoDB.

Now create a helping class named "studentinfo" that contains "_id" that one is an ObjectId type and uses MongoDB.Bson,

studentId and Name; all are string type.

1. using MongoDB.Bson;
2.
3. namespace MongowithAsp
4. {
5. public class studentsinfo
6. {
7. public ObjectId _id { get; set; }

©2014 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

8. public string studentId { get; set; }
9. public string Name { get; set; }
10. }
11. }

Now, create a simple button and a label as shown below:

1. <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="retreivedata.aspx.cs" Inherits="MongowithAsp.retre
ivedata" %>

2.
3. <!DOCTYPE html>
4.
5. <html xmlns="http://www.w3.org/1999/xhtml">
6. <head runat="server">
7. <title>ASP.NET with Mongo</title>
8. </head>
9. <body>
10. <form id="form1" runat="server">
11. <div>
12. <h1> </h1>
13. <asp:Button ID="showButton" runat="server" Text="Show Students" OnClick="showButton_Click" />
14. </div>
15. <asp:Label ID="nameLabel" runat="server"></asp:Label>
16. </form>
17. </body>
18. </html>

And write the following code for the button click event:

1. using MongoDB.Driver;
2. using System;
3. using System.Collections.Generic;
4. using System.Configuration;
5.
6. namespace MongowithAsp
7. {
8. public partial class retreivedata : System.Web.UI.Page
9. {
10. string name = "";
11. protected void Page_Load(object sender, EventArgs e)
12. {
13.
14. }
15.
16. protected void showButton_Click(object sender, EventArgs e)
17. {
18. List<studentsinfo> names = new List<studentsinfo>();
19. MongoServer server = MongoServer.Create(ConfigurationManager.AppSettings["connectionString"]);
20. MongoDatabase myDB = server.GetDatabase("test");
21. MongoCollection<studentsinfo> Students = myDB.GetCollection<studentsinfo>("students");
22. foreach (studentsinfo Astudent in Students.FindAll())
23.
24. {
25. namename = name + " " + Astudent.Name;
26. names.Add(Astudent);
27. }
28. namenameLabel.Text = name;
29. }
30. }
31. }

©2014 C# CORNER.
SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

We have created an instance of MongoServer using the connection string and by iterating through the collection, we are

getting the individual student and adding it in the "names" list.

Let's debug to check the output.

Resources and References

Mongo DB Resources, Publications, and Channel 9 Videos

Mongo DB Documentation Site

http://docs.mongodb.org/manual/

Community

http://www.mongodb.org/get-involved

http://docs.mongodb.org/manual/
http://www.mongodb.org/get-involved

